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ABSTRACT

Title of Dissertation: = Geometry, Dynamics and Control of Coupled Systems

Li-Sheng Wang, Doctor of Philosophy, 1990

Dissertation directed by: Dr. P. S. Krishnaprasad
Professor
Department of Electrical Engineering

In this dissertation, we study the dynamics and control of coupled mechanical
systems. A key feature of this work is the systematic use of modern geometric mechanics,
including methods based on symplectic geometry, Lie symmetry groups, reductions,
lagrangian mechanics and hamiltonian mechanics to investigate specific Eulerian many-
body problems. A general framework for gyroscopic systems with symmetry is introduced
and analyzed. The influence of the gyroscopic term (linear term in Lagrangian) on
the dynamical behavior is exploited. The notion of gyroscopic control is proposed to
emphasize the role of the gyroscopic term in designing control algorithms. The block-
diagonalization techniques associated to the energy-momentum method which proved to
be very useful in determining stability for simple mechanical systems with symmetry are
successfully extended to gyroscopic systems with symmetry. The techniques developed
here are applied to several interesting mechanical systems. These examples include the
dual-spin method of attitude control for artificial satellites, a multi-body analog of the
dual-spin problem, a rigid body with momentum wheels in a central gravitational force

field, and a rigid body with momentum wheels and a flexible attachment.
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CHAPTER |

Introduction

Coupled systems very often arise in the design and control of complicated mechan-
ical systems, such as robots and complex spacecraft. The kinematics and dynamics of
each individual body in such a system are highly coupled with the motions of the other
bodies. Geometry, dynamics and control are three essential components of a rigorous
study of the problems underlying such systems. A rational approach is to first recognize
the geometrical structure of the system, followed by a study of the dynamical behavior
based on fundamental principles. With this understanding, control algorithms can be

then explored to fulfill design requirements.

This dissertation is part of an on-going program to understand the dynamics and
control of multibody systems from a modern point of view, see [65] [54]. In [37], questions
concerning the dynamics of systems of kinematically coupled rigid or flexible bodies are
referred to as Eulerian many-body problems to emphasize the role of Euler forces (or
frame forces) in determining the nature of inter-body interactions. Typical spacecraft
designs, such as that of the Explorer, Orbiting Geophysical Observatory, Hubble Space
Telescope, etc., present examples of such problems. The Remote Manipulator System
on the space shuttle, the proposed Tele-robot Work System, and many terrestrial robots
are further instances. A careful investigation and understanding of such problems is
necessary to achieve successful design and control of such complicated systems with

demanding mission objectives.

The key feature of this dissertation is the systematic use of modern geometric
mechanics, including methods based on symplectic geometry, Lie symmetry groups, re-
ductions, lagrangian mechanics and hamiltonian mechanics, to explore specific Eulerian
many-body problems. This intrinsic approach provides us with a tool which is global

and coordinate free; thus avoiding the singularity problems and cumbersome calcula-
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tions associated with local coordinates, e.g. Euler angles for the rotation group 50(3).
In the following, Chapter Two describes the invariant form of the Lagrange-d’Alembert
Principle in lagrangian mechanics. The special geometric structure of the rotation group
or the special orthogonal group SO(3) is exploited and used to display the classical
Euler-Lagrange equations in intrinsic geometric form. This development provides funda-
mental connections between lagrangian mechanics and hamiltonian mechanics whenever
problems arise with the rotation group appearing as a factor in the configuration space.
Chapter Three introduces the general framework of gyroscopic systems with symmetry.
This framework plays a central role in the following development. Reduction in both
symplectic and Poisson senses are worked out in detail. One variational characteriza-
tion, namely the principle of symmetric criticality, for the relative equilibria is derived
for gyroscopic systems and applied to a mechanical system consisting of two rigid bodies

connected by a ball-in-socket joint.

In designing a communication satellite or an interplanetary probe, engineers are
often faced with the requirement that the spacecraft be able to maintain a fixed ori-
entation relative to some inertial frame. In the process of attitude acquisition, damp-
ing effects play an important role. Chapter Four initiates a discussion of hamiltonian
systems with some added dissipation. A multibody analog of the classical dual-spin
problem is formulated and an asymptotic stability theorem is established. Namely, the
system asymptotically approaches a stable relative equilibrium of a suitable limiting
gyroscopic system. This leads us to consider stability issues. Accordingly, several tech-
niques in stability analysis are discussed in Chapter Five. The energy-Casimir method,
the Lagrange-multiplier method, and the energy-momentum method are discussed. In
particular, the block diagonalization technique arising in the energy-momentum method
for simple mechanical systems with symmetry [62] [61] is extended to gyroscopic systems

with symmetry.

In the study of Newtonian many-body problems in celestial mechanics, it is
customary to treat the bodies as point masses. See, for example, Sternberg (68],

Smale [64], and Abraham and Marsden [2]. However the proper accounting of stable

planetary spins for instance, would seem to require the consideration of bodies of finite
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extent. This makes the problem an Eulerian many-body problem. In Chapter Six, the
hamiltonian framework of a rigid body in a central gravitational force field is formulated.
The reduced hamiltonian formulation introduced provides a systematic approach to the
approximation of the underlying dynamics based on a series expansion of the reduced
Hamiltonian. These approximations preserve the structure of the system. The energy-

Casimir method and the Lagrange-multiplier method are then used to prove stability

results.

The main feature of gyroscopic systems with symmetry resides in the linear term
in the Lagrangian. The essence of gyroscopic control is to investigate the role of that
linear term in dynamical behavior, and furthermore to utilize that linear term to control
the system dynamics. These issues are illustrated in great detail in Chapter Seven
with four examples. They are dual-spin, dual-spin in a central gravitational force field,
multibody dual-spin, dual-spin with a flexible attachment. The last example is an
infinite-dimensjonal system and the modeling techniques developed in Chapter Two are
extended to such cases. The effects of the linear term on stability are explored for each
problem by using the techniques developed in Chapter Five. The discussions shed some

light on a general methodology in attitude control.

This dissertation concludes with Chapter Eight where some future directions for

research are also outlined.

There are three numbering systems in this dissertation. One is for equations, one
is for Figures and Tables, the other is for Definitions, Theorems, Lemmas, Corollaries,
Propositions, and Remarks. They all have three digits, with the first and second digit
representing the chapter and section number in which they occur in, respectively. The

third one is the order of occurrence of that item in the corresponding section.



CHAPTER 1l

Lagrangian Mechanics

Lagrangian mechanics provides a systematic way of dealing with mechanical
problems from a unified point of view. In contrast with working on the cotangent bundle
as in most of hamiltonian mechanics, lagrangian mechanics formulates the problems on
the tangent bundle, or the coordinate-velocity space. As we shall see, it admits greater
freedom in interpreting and formulating intuitive physical notions such as forces and the
principle of virtual power. Especially for nonholonomic mechanical systems, there is no
nice “hamiltonian”, or “symplectic” equivalent notion to lagrangian mechanics. In this
chapter, we discuss the lagrangian formalism in its invariant form, and then apply it to

the dynamical modeling of some specific problems. A key source of inspiration is [6g].

2.1. Intrinsic Form

In this section, we introduce the invariant form of lagrangian mechanics through
local representations and show that the invariant form of the Lagrange-d’Alembert
Principle gives rise to the Euler-Lagrange Equations in local coordinates.

Let Q be a smooth manifold (configuration space) with local coordinates z, TQ
be the tangent bundle of @ with local coordinates (z,v), 7 : TQ — @ be the canonical

projection defined by

7(z, v) =

The tangent map T'r of the canonical projection, T'r : T(TQ) — TQ,can be expressed

in local coordinates as

TW(z,u) ('LL,’U)) = 1Uu € T:L‘Q?



which is a projection from T(TQ) to TQ. Since the Euler-Lagrange Equations are
second-order differential equations, we need to consider the corresponding elements in
the jet spaces of @, namely the second tangent vectors. Let T(T'Q) be the second
tangent bundle with local coordinates (z, v, u, w). Let T, ) be the tangent space of
TQ at (z, v),ie T(z,)TQ. Let T(‘;,v) denote the vertical tangent subspace of Tz
which consists of vectors tangent to the fiber of T'Q. In local coordinates, each vector

in T(‘;,v) can be written as (0, w), for some w € T,Q.

Define the map

Y(z,w) * TxQ T(a:,'u) TQ

A (2.1.1)

Vzwy ~ U (0, u) € T(‘;.v)

which is an isomorphism between T.() and T(‘;,v). Let X : TQ — T(TQ) be a vector
field on TQ. X is called a vertical vector field if X(z, v) € T, (‘;’v) or

X(z, v) = (0, w), forsomew € T.Q.

This is equivalent to saying 77 - X = 0. A vector field XFV is called the principal

vertical field if it is a vertical vector field and

XPV(z, v) = yaw v,

which is (0, v) in local coordinates. Let w be a 1-form on TQ. It is said to be

horizontal if for all vertical vector fields X, w(X) = 0, or in local coordinates,

w(z, v) = (@, 0), forsomea € T;Q.

The dual of the map T7(z ) : T(zw) TQ@ — T: Q can be defined as
Tt T2Q — ToowTQ
(Tri“x,v)a) (v, w) = a( Tz (v,w) = ofu)
where o € T;Q. Thus, Tﬂ&"x v &= (a,0), in local coordinates. Also, we denote the
dual of 7(1:,11) )
7(.::,1;): T(‘:r,u) TQ - T:;Q

S



in local coordinates,

(7{x,v)(a’ ,3)) (u) (a’ ﬂ) (7(x,v) ) u)
(e, B) (0, u)

B(w).

Equivalently, 7(; ,,(;, 8) = 8. Now we define the map 7 : T*(TQ) — T"(TQ) to be

Tzw) = TT(z0) Vo) (2.1.2)

In particular, for (a,8) € T, ,TQ,
T (@ B) = TT(z0) Vo (@ B)
= Tw{x,v) ]
= (8, 0).

Thus, we know that 7 ,) maps any cotangent vector (covector) to a horizontal covector

by the mapping
(@, B) ~ (8, 0).

Globally 7 maps any 1-form on T'Q to a horizontal 1-form on 7@ . On the other hand,

we may define a map from the second tangent bundle to itself

. : T(TQ) — T(TQ)

as

A
Te(z,w) = 7(z,v)'T7r(z,u)- (2.1.3)

In local coordinates we can associate to each (u,w) € T(z,)T@Q,

Tu(z,v) (u, w) = Y(z,v) ‘T (z,v) (u, w)

= Y(z,v) (’U.)
= (0, u).
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In other words, 7.(z,,) maps any second tangent vector to a vertical tangent vector by

the map
(u, w) — (0, u),
and 7. maps a vector field on T'Q to a vertical vector field on T'Q.

DEFINITION 2.1.1

X € X(TQ),a vector field on T'Q, is a special vector field if and only if

X = XFPV.

In local coordinates, assuming X(z,v) = (u,w), it says

nX(z,v) = Ty, w) = (0, u) = XPV(xv v) = (0, v),

which is equivalent to the condition u = v. We thus know that this definition of special
vector field is the same as saying X gives rise to a second-order equation on ¢ in the

sense of Abraham and Marsden [2],or Tx - X = identity on TQ.

Now, let L : TQ — R be a smooth function (called Lagrangian). The correspond-
ing differential 1-form

dL : TQ — T*(TQ)

can be written in local coordinates as,
dL(z,v) (v, w) = TLz) - (u, w)

=L La+eu view) (2.1.4)
de |, o

= D1L(z,v)-v + DL(z,v)  w.

where (z 4 €u, v + €w) denotes a curve in TQ generated by the tangent vector
(u,w) € T(z»)TQ . Recall that tangent vectors may be defined through the equivalence

classes of curves. For the tangent vector (u,w), the curve (z + €u, v+ ew) is thus an

7



element in the equivalent class of curves associated with (u,w). In the following, we

sometimes write

(v, w) = [(z+eu, v+ew) ]

From (2.1.4), we have the expression

dL(z,v) = (D1L(z,v), DyL(z,v)).

The horizontal 1-form @7 on T'Q corresponding to L is defined to be

0, £ r-dL. (2.1.5)

In local coordinates,

Or(z,v) = T(z,v) - dL(z,v)
= Tzpw) (DlL(.’E,’U), D2L(I,’U))
= (D9 L(z,v), 0).

Taking the exterior derivative, we can associate to L a 2-form on TQ
Q : T(TQ) x T(TQ)— R

QL £ -doy. (2.1.6a)

If we write
©r = DL dzt,

then, by taking exterior differentiations on both sides, we get

Q. = —dD,L A dz'

~(DgiDyL dz¥ + D,iDyL dvi) A da'

= D,iDyLdz' A dzl + D,iDuLdz' A dv’. (2.1.6b)
We have another expression for the 2-form Q. Letting (uy,wr), (uz,wz) € Tz, TQ,
we have the following formula in local coordinates,

8



Qr(z,v)((ur, w1), (u2, w2))

= — DOp(z,v)(u1, w1)- (u, we) + DOL(z,v)(u2, wa) - (u1, wr)

I

(D1DyL(z,v)-up) - uy + (DeD2L(z,v) wy)-uy

— (D1DoL(z,v) - uy) - ug — (DaD2L(z,v) wy) - ug (2.1.6¢)

Note that this formula is exactly the same as the Lagrange 2-form wy in p.211 of [2],
which is derived from the canonical symplectic 2-form on the cotangent bundle T"Q).

Here we proceed in a direct way.

Let T(;ff,) denote the space of horizontal covectors at (z, v) in TQ. Define the

map

o T('H - T;Q

z,v)

to be, in local coordinates, for @ € T2Q),

O(z,v) (@, 0) 2 a

Next, we give the intrinsic form of Legendre transformation which maps the velocity
phase space to the momentum phase space. The Legendre transformation corresponding

to the Lagrangian L can be defined as

L, :TQ — T7Q
(2.1.7a)
(:E, U) and (IB, O(z,v) -@L(Z,’U)) ’

or, equivalently,

Lr(z, v) = (z, DyL(z,v)) (2.1.7b)

which is exactly the same as defined through fiber derivatives in [2].

Assuming now that £, is a diffeomorphism (or L is hyperregular), we have

9



gt TQ - TQ.

(This condition implies that, in local coordinates, Dy Dy L(x,v) is nonsingular.) Denote

the space of k-forms on a manifold M as w®(M). By the pull-back of £;7,

(eh)* : #(TQ) — = (T"Q),

we can define a 2-formon T7@Q as

A -1y

(2.1.8a)

Although Qp is L-dependent, wy defined above is invariant under the change of L. In

fact, it is the canonical symplectic 2-form on the cotangent bundle as established by the

following lemma.

LEMMA 2.1.2
Letting (z,p) be local coordinates of 7@, we have

wyp = dz A dp,

which is the canonical symplectic form on the cotangent bundle.

Proof

Let (v1, B1), (v2, B2) € T(z,p)(TQ). We compute wo as follows.

wo(z, p) ((vla ,Bl)s (vz, /32))
= ()" QL) (2, ) ((v15 B1)s (v2, B2))

= (£ (=, p) (TLT (v, B), TLL (v, B2)) -

Since T(¢7') = (T4L)™!, assuming ¢4z, p) = (z, v), we have

Tezl (vla ,31) (ula wl) € T(z:,v)TQ
T‘e[—,l(v% ﬂZ) = (u'lv ’I.Ug) € T(x,u)TQ'

Then,

10
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(v1, Br) = Tilr(w, wr)

= [fL(l‘ + tUl, v + t’LU1)]
(2.1.9)

[ (z + tuy, DoL(z + tus, v + twy)) ]
= (/ul, D\DyL(z,v)-u + DgDzL(z,v)-wl),

which implies

il

v, = U, b1 DiDyL(z,v)-uy + DaDyL(z,v)- wy.

Similarly, we have

Vy = Ug, ﬁz = DngL(z,v) © U9 + DgDzL(ZE,'D)"wz.
Thus, by the formula of £ in (2.1.6¢), we have

wo(z, p)((v1, Br), (v2, B2))
= Qu(z, v) (w1, w1), (u2, w2))
= — (D1D2L(z,v) - u1) -uy — (DaD2L(z,v)  w1) us
+ (D1D3L(z,v) - u2) - s + (D2DyL(z,v)-w2) 1
= f2(u1) — Br(u2)

In terms of the wedge product, we obtain wqg in the desired form.

From the above discussions, we conclude that when the Legendre transformation
is diffeomorphic then the two approaches, either from the cotangent bundle or directly
from the tangent bundle are equivalent. Moreover, (T"Q, wo), (TQ, QL) are both
symplectic manifolds. From them, we may define corresponding Poisson structures on

each manifold.

REMARK 2.1.3
The 2-form 2, defined in (2.1.6a) is valid for every Lagrangian L. However, it is

nondegenerate, and therefore a symplectic structure, only when L is regular,or £, is a

local diffeomorphism. For a singular or irregular L, Qr becomes presymplectic, namely
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1 is no longer of maximal rank. Discussions for this case may be found in, e.g. [24]

[25].
|
By using the symplectic 2-form €, we can define a one-to-one correspondence
between the vector fields and l-forms, I; : @ (TQ) — X(TQ) through, for
w € w'(TQ),

QL(IL(w), Y) = w(Y), VYe %(TQ). (2.1.10)

In terms of the inverse of II;, the expression is

Qu(X,Y) = I7Y(X)(Y), VY€ %(TQ),

or
(X)) () = (X, ).
LEMMA 2.14
II;, maps horizontal 1-forms to vertical vector fields.
Proof

We prove the result using local coordinates, and leave reader to find the invariant

proof [6g]. Let w(z,v) = (a,0). Assume that

Mp(w)z,v) = (u, w),

where u, w € T>Q . From (2.1.6¢),(2.1.10), we have the following
(D1D3L(z,v)- Y1) u + (D2 D2L(z,v)-Y2)-u
— (D1D:L(z,v)-u) Y1 — (D2DyL(z,v) - w)-Y2 = (e, Y1),

for all Y7, Y2 € T:Q . Setting Y = 0, we get
(D2D2L(z,v)-Y2)-u = 07 Vi’? ET:L'Q’

which implies that 4 must be zero, and thus Iz (w) is a vertical vector field.
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Now we define the energy functionon T7TQ, Hy : TQ — R, as

Hy = dL(XPY) - L. (2.1.11a)
In local coordinates,

Hi(z, v) = dL(z, v) (0,v) — L(z, v)

DyL(z,v)-v — L(z, v) (2.1.11%)

Lr(z,v)-v — L(z, v)

which is exactly the same notion as the energy defined in p.213 in [2]. The function
dL(XPV) is called the action corresponding to L in [2]. From the energy function Hp

on the velocity space, we may define a function on the momentum phase space as

H :TQ - R,
H = HLOZZI.

This hamiltonian system (T™*Q,wq, H) is the customary object of study in hamiltonian

mechanics.

The Lagrangian vector field determined by L is defined as,

2

XHL HL( d}IL ), (2.1.12(1)

or, equivalently,

Ou( Xn,, Z2) = dHL(Z) VY Ze %(TQ). (2.1.12b)

In local coordinates, the matrix form of (2.1.12b) is

xE @z = va, Tz

Thus we may write the Lagrangian vector field as
T ,
Xg, = ([Q7Y) VH,. (2.1.12¢)
In the language of Poisson structures, X, is the Hamiltonian vector field corresponding

to the Hamiltonian Hy, and thus H is a first integral (conserved quantity) along the
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vector field X g, . We say that we can define consistent equations of motion if such an

Xp, exists.
LEMMA 2.1.5
XpH, Is a special vector field.

Proof
Let Xpg,(z, v) = (w1, wy). By definition (2.1.12b), for all (ug,w;) € T(z,TQ,

Qu(z, ) (w1, w), (v, w2)) = dHr(z,v) (u2,ws)

The RHS (Right Hand Side) of the above equation can be written as

dHi(z, v) (uz, ws)
= [ Ho(z + €uz, v 4+ ews) ]
= [ D:L(z + €uz, v + €wz)-(v + ewz) — L(z + €ug, v + €ws) ]
= (D1DsL(z,v) - u2)-v + (D2D2L(z,v) - wy) v — DiL(z,v)- uy.

By comparing this with (2.1.6¢), it can be seen that, for u; =0,

(DQDQL(Q:,’U) . ’U)jz) U = (DngL(:L‘, 'l)) . ’lD2) v, v wy € TxQ,

which implies u; = v. Thus, Xy, is special.
|

Now, we are ready to describe the Lagrange-d’Alembert principle. First, we note
that for a mechanical system, virtual displacements could be thought as special vector
fields on TQ, and forces could be modeled as horizontal 1-forms on T'Q. This will be

discussed further in the following chapters.

DEFINITION 2.1.6

For a Lagrangian L, the associated Lagrangian force on a virtual displacement

X , F (X), is defined through
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FL(X)(Y) £ Qu(X,Y) = dHL(Y), VY € %(TQ) (2.1.13)

The Lagrangian force Fy(X) is a 1-form on TQ. For it to be a well-defined force, we

need the following lemma.
LEMMA 2.1.7
Fp(X) is a horizontal 1-form on TQ.

Proof

Since X is a special vector field (the same notion as a virtual displacement), it

can be written as

X(z, v) = (v, w), where w € T,Q.

Letting (uz,w;) € T(,,)TQ, we have, from (2.1.13),

Fr(X)(z, v)(uz,ws)

= Qr(z, v) (v, w), (uz, w2)) — dHL(z, v)(uz, w2)

= (D1DyL(z,v) - ug) - v+ (D2 Dy L(z,v)- wa) - v
— (D1DyL(z,v) - v) - ug — (D2 Dy L(z,v) - w) - u2
— (D1 Dy L(z,v) - up) - v — (Da Do L(z,v) - wo) - v+ D1 L(z,v) - u2

= — (D1DyL(z,v)-v) - up — (D2 D2 L(z,v) - w) - ug
+ Dy L(z,v) - us.

For arbitrary vertical vector field Y, us = 0, and hence Fp(X) (Y) = 0. Thus the

1-form Fp(X) is horizontal and has the expression, with X (z,v) = (v,w),

Fr(X)z,v) (u,w2) = (=D1D2L(z,v) v - Dy Dy L(z, v) - w+ DyL(z,v) ) - u.
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REMARK 2.1.8

Definition 2.1.6 holds even for L singular, ¢f. Remark 2.1.3. If L is hyperregular

where the Legendre transformation is invertible, we may write, cf. (2.1.10),
Fr(X) = HZI(X) - dHy,.

This is the definition used in [69] for the Lagrangian force.

We are ready to state the following principle.

LAGRANGE D’ALEMBERT PRINCIPLE 2.1.9

For a holonomic mechanical system, on the virtual displacement (special vector
field) that determines the real trajectory of motion, the sum of the Lagrangian force and

the exterior force is 0.

In classical mechanics, the Lagrangian force consists of resultant force of inertia
and forces coming from the potential energy. Thus the principle here corresponds to
the classical d’Alembert principle, see e.g. [39]. As discussed in [3g], the fundamental
entity in analytical mechanics is the virtual work, instead of the classical notion of force.
Here we unify the notion in terms of horizontal 1-form, where the classical forces are

represented by the coordinates of this 1-form.

Let w be an exterior force or a horizontal 1-form. Principle 2.1.9 says that

Fu(X) + w = 0, (2.1.14)

where X is a special vector field. The trajectories of motion of the mechanical system
with Lagrangian L follow the flows of this vector field. In the absence of any exterior

force and L being regular, from (2.1.13), we may write

QL(X,Y) = dHL(Y), VY € %(TQ),

which, by definition of Xy, , says that
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X = Xy,

i.e. the Lagrangian vector field gives the real trajectories of motion.

Now we state the Principle 2.1.9 in local coordinates. In local coordinates,

Fr(X) (z, v) + w(z, v) = 0.
Letting w = (a, 0), X(z,v) = (v, w), we have
(-DngL(x,v) v —DoDyL(z,v) w+ DlL(a:,v)) cut+a-u = 0, VueTQ.

By including time derivatives as v = z, w = v, we get

d

I DyL(z,v)-u = DiL(z,v)-u + o-u, VueTQ. (2.1.15)

Integrating both sides with respect to the variable ¢, the equation can be rewritten as

T T T
Dy L(z,v) u| - / DyL(z,v) - us dt = / (D1L(z,v)-u + a-u)dt.
o 0 0

This corresponds to the Principle of Virtual Power in analytical mechanics, cf. e.g. [73].
The tangent vector u is sometimes called test function. In the case that the pairing is

nondegenerate, for example, in the finite dimensional case, we can write (2.1.15) as

dit' DyL(z,v) = DyL(z,v) + «a, (2.1.16)

which is the classical form of the Euler-Lagrange equation. Here the operators Dy, D,
denote the partial derivatives of L with respect to configuration and velocity variables

respectively.

2.2. On the Special Orthogonal Group SO(3)

Now we apply the Lagrange-d’Alembert Principle 2.1.9 to problems with the
Special Orthogonal Group SO(3) as configuration space and find the corresponding
equations of motion. Recall that each element A in SO(3) is an element in GL(3),

the group of all 3 x 3 nonsingular matrices, which satisfies the condition ATA = T
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and det(A) = 1. Due to the constraints, the classical Euler-Lagrange Equation in local
coordinates is not directly applicable. For the modeling problems regarding coupled rigid
bodies, see e.g. [76].

Let the operator ~ denote the natural isomorphism from R® to so(3), the space

of 3 X 3 skew-symmetric matrices, defined by

Wy 0 —w3 Wy
wy | = w3 0 -—w . (2.2.1)
w3 —Wa w1 0

The following identities satisfied by this operator can be checked by direct computation.
With a,b,c € R®,

ab = axhb. (2.2.2a)
(6,8 = ab—ba = axb. (2.2.2b)
Aa AT = Aa, for A € SO(3). (2.2.2¢)
tr(abé) = —(axb)-c (2.2.2d)
tr(@ M aT) = a-M° a, (2.2.2¢)
where, for
My My My
M= | My My Mg,
Ms3 Mi; Mss
we have
Maz + Mss — My, —Mys
M° = -M>» My + Ma3 —M23
- M3 - Mj; My + My
Moreover, in order to have
tr(a M 57) = a-M° b, (2.2.2f)

the matrix M needs to be symmetric. Here tr(-) denotes the trace of a matrix. These
formula will be used later in calculations related to skew symmetric matrices.
Given A € SO(3), recall that (A4, A{) characterizes elements in TSO(3). In

mechanics, the variable €1 corresponds to the instantaneous angular velocity of the
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motion in body coordinates. To get a representation of the elements in the second tangent

bundle TT'SO(3), we make the following observation. See [7] for relevant discussions.
d - . 2 . n 2
E_t-AQ = AQ+ AQ = AQQ+ Q).

Thus the special second tangent vectors must be of the form

(4, A%, 4%, 400+ 2)).

In general, let (A%, W) € T(4, 42)TSO(3). In order to have this vector generate a curve

(Aeeﬁ, Ae () + euv)) € TSO(3)

which passes through (4, AQ) when ¢ = 0, we must have

d

W=

A Y (Q +ed) = AAQ + w).
e=0

Consequently, any element in T7'SO(3) can be written as
(4, 4, A2, A2 + ). (2.2.3)
Next we look for a canonical representation for an element in T*T'S0O(3), the dual space
to the second tangent bundle. First, recall that the trace pairing in GL(n)
1
(A,B) = -2-tr(ATB). (2.2.4)
This provides us with a standard way to define elements in 7*S0O(3), i.e. we could let
Aa € T;50(3), and
(Ad, Ai) = Str(aTATAR) = a-u, (2.2.5)
where a-u denotes the Euclidean inner product. This is the negative of the Killing form
on the Lie Group SO(3) [35]. Let w(4, AQ) = (a,8) € T(;'AQ)TSO(3). We have
. - 1 1 LA .
w(A, AQ) (Aﬁ,A(ﬂQ +1)) = str(a” At) + Str(BTA(U) + ©)).
In order to have a,b € R?, such that
w(A, AQ) (Aﬁ, A + u”))) = a u+b-w,
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we ask
B = Ab.
Thus we obtain the representation for elements in T*T'SO(3) as follows,

(A, AD, A + a), AB). (2.2.6)

The above discussions are based on the representation (A4, A{Q) for elements in
TS50(3), where Q is in body coordinate. We could work out similar formulations bases
on the representation (4,&A), where w is the instantaneous angular velocity in spatial
coordinate. We have the relationship w = AQ.

We remark here that these are the pa.rametriiations of TTSO(3) and T*T'SO(3)
which are globally defined via the embedding of SO(3) in GL(3). Our goal has been
to make the pairing analogous to the Euclidean space. These global representations
(2.2.3), (2.2.6) of the second tangent bundle and the dual of the second tangent bundle
on SO(3) also prove to be useful in finding the derivatives or variations of a function
(Lagrangian) on T'SO(3) and in deriving the reduced Poisson bracket. These issues
will be discussed in the following chapters in greater detail. In the following, we state
the Lagrange-d’Alembert Principle in terms of these representations. For simplicity, we
restrict ourselves for the moment to problems with configuration space SO(3). We now
show how to derive the dynamical equations of motion on that space.

Following an argument similar to the one used in deriving the classical Euler-
Lagrange equation in local coordinates as in Section 2.1, we notice that all the definitions
and identities corresponding to the local coordinates also hold here. We have the

following theorem.

THEOREM 2.2.1

On TSO0O(3), let a system be described by a Lagrangian L. The Lagrange-
d’Alembert Principle in the invariant form (2.1.14) applied to the motions on SO(3)

gives us the Euler-Lagrange equation,
d . - R X
- a)y = (D1L(A, AQ), A , At),
<dt D,L(A, AQ), Ai) (D1L( ), Ad)y + (o, Ad) (2.2.7)
YV Al € T4SO(3).
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where « is the exterior force. (Here Dy, D, are the usual partial Fréchet differentials.)

Proof

Based on an argument similar to the one in Section 2.1, we have the following
formulae. The key observation here is that with the representations (2.2.3) and (2.2.6),
the space of vertical tangent vectors is isomorphic to the fibers in TSO(3). In particular,

vertical vector fields could be written as
(0, Ad), Aw € T450(3),
and the horizontal 1-forms as

(Aa,0), AaeT;S0O(3).
The corresponding mappings 7, 7, 7. are well defined as, cf. (2.1.1), (2.1.2), (2.1.3),
YA, 4d) - At = (0,Aq),
Tea,amy(A(Q + 2), 4b) = (45,0),
Tty (A, A(BQ +9)) = (0, Ad).
A special vector field takes the form
| X(4, AQ) = (4Q, A(QQ + w)).

The differential form of the Lagrangian on TSO(3) can be written as
dL(A, AQ) (Ad, A(2Q + )
= [ L( Ae*®, Ae'™(Q + th) }
= ( (D1L(A, AQ), D,L(4, AQ)), (Ad, A(iQ + b)) ).
The 1-form defined in (2.1.5) is now
0L = 7-dL = (DyL(A, AQ), 0).

With proper interpretations of the pairing, the derivations in Sec. 2.1 give us the form

of the Euler-Lagrange’s equation (2.2.7) for a motion on SO(3).
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Now we ascribe meanings to the proper interpretations via the following example.

EXAMPLE 2.2.2

Consider the motion of a free rigid body in space. The configuration space is
S0(3). Let (A, AQ) be an element in TSO(3) with the physical interpretation that A
represents the attitude of the body and Q is the instantaneous angular velocity in body

coordinates. The Lagrangian of the system can be written as

L(4, AQ) = %Q-IQ, (2.2.8)

where I is the moment of inertia of the rigid body. Now we find the differential of L
in the form of (2.2.6). Let (U, W) € T4 4q,T50(3), which could be written as, cf.
(2.2.3),

(Ad, A(EQ + b)),
where u, w € R3. It generates a curve in TSO(3) given by
(AeEﬁ, Aect(Q + ezb)) .

Hence we have, from (2.2.8),

dL(A, AQ)(U, W)

L(Ae®, Ae**(Q + e))

€=

4
de
4
de

0
(Q+ ew)T 1(Q + ew)
0

= w-IQ.
The canonical form for dL(4, AQ) is (A(BQ +a), AB) , cf. (2.2.6), and

dL(A, AU, W) = a-u + b-w.

Thus b = I and we obtain
D1L(A, AQ)

oo
N
i e
o) 2
P2

D,L(A, AQ)
By taking the time derivative of Do L, we get
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d n .~ - . -
E D;L(A, AQ) = AIQ + AIQ = A(QIQ + IQ).

From Theorem 2.2.1,
(AQTD + 1I0), Ad) = (AIQQ, 44), ¥ Ad e T4SO(3),
or
(A(IQ + 0I0 - 100 ), 44) = 0, V Ai e T4S0(3),
which implies
(AIQ + QxIN), Ad) = 0, V Ad e T450(3),
or

(I + @ xIQ)-u = 0, YueR>

Since the Euclidean inner product is nondegenerate, we conclude,

10 = - OxIQ,

(2.2.9)

which is exactly the Euler’s equation for rigid body. Accompanied with the attitude

equation,
A= AQ,

the dynamical equations of a free rigid body are obtained.

In the following chapters, we will use the procedure of this section as a model for

working out the dynamics of more complicated problems. We remark that, under this

framework, we may mix the local coordinate on some manifold and the parametrizations

for SO(3) in deriving the equations of motion. This is very helpful when we are dealing

with systems which have a mixed configuration space (e.g. Cartesian products of a Lie

group and a smooth manifold).
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CHAPTER Il

Gyroscopic Systems with Symmetry

In this chapter, we discuss a general framework for gyroscopic systems with
symmetry, which inciude the simple mechanical systems with symmetry in the sense
of Smale [64] as a special case. A variational principle which characterizes the relative
equilibria is derived and applied to a particular example, namely, a mechanical system

consisting of two rigid bodies connected by a ball-in-socket joint.

3.1. Preliminaries

In this section, we introduce a few notions in the theory of riemannian manifolds,
Lie groups, and reduction which will be used frequently in subsequent discussions in this
dissertation. Let (@Q,< -,- >») be a riemannian manifold with the riemannian metric

&£ -,+ > . We sometimes write

I((.’I:)(’l)z, we) = L Vg, Wr Dy, (3.1.1)
for z € @, and vy, w; € T.Q. This Riemannian metric induces a vector bundle
isomorphism

K : TQ — TQ,

defined by
(K*(v), We)e = € Vg, Wy >z, for all vz, we € T2Q, (3.1.2)
where (-,-); denotes the pairing between elements in T;Q and T:Q. By the Riesz
Representation Theorem, this isomorphism is well defined and we may write
KY = (K™ : T"Q — TQ,
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which is also a fiber-preserving mapping. We have the following relation. For o, € T*@,
(az, Wr)r =K K'Y ag, wy >z, forw, e TQ. (3.1.3)

The mappings K”®, K" are both linear in their argument. Using the isomorphism K*,

we define an inner product on T*Q as

A Ed >
<0z Bz >1.q = K K'-op, KB >, (3.1.4)

for az, Bz € T2Q. Let G be a Lie group, & :G x Q — @ be a group action of G on
the manifold Q. We shall use the notations ®(g, z) = ®,(z) = ¢ -z interchangeably to
denote this action. We define the associated actions on T'Q, T*@ in the following way.
The tangent lift ®T associated with @ is defined as @Z‘ = T®, : TQ — TQ,or,in

local coordinates,

%T(x, v) = (‘I)g(z), T:9,-v).

The cotangent lift ®T  associated with ® on the cotangent bundle 7@ is defined as
3T . GxT*Q — T7Q,
- Jagp—-
@g (0z) =T"® g1y,

where T*® -1 is the dual of T® 1. In local coordinates, we have

(Qgt(z, @), (-2, v))gzr = (o, TgePy-1-v)s. (3.1.5)

The cotangent lift just defined is exactly the same notion as the lifted action in [2]. The
former terminology is adopted here to indicate the space it acts on. It is easy to show
that the tangent lift and cotangent lift are both well-defined actions on the spaces TQ
and T*Q respectively.

Now we review a few notions in the theory of Lie groups and reduction, cf. [2].
Let the Lie algebra of a Lie group G be denoted by G, with its dual G*. Recall that
the Lie algebra G is identified as the tangent space to G at the identity element e or,
equivalently, the set of left invariant vector fields on G, cf. also [49]). Given £ € G, fora

group action on a manifold ¢, we define

to(z) £ fi- Bexpec(z) € ToQ, (3.1.6)

e=0
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the infinitesimal generator of the action corresponding to £. Group G acts on G through
the adjoint action

Ad : G X G —- @G
(3.1.7)
(93 3 ) - Te(R_q"l o Lg)§ = Adg§7

where Lg,, R, denote the left and right translation of a group element by ¢ € G,

respectively. The map g — Ad, is also called the adjoint representation of G in G. The
infinitesimal generator of this adjoint action

d

Eg(n) = E o Adexp (1)

can be shown to be equal to the Lie bracket of £ and 7, namely,
N
€g(m) = [& n] = aden. (3.1.8)
The group G also acts on the dual of the Lie algebra G* through the coadjoint action
Ad® . G x G — G7,
(g, n) — Adpap,

which is defined by,

(Adju, €) = (b, Adgf), VEEG, (3.1.9)

where (-,-) denotes the duality pairing on G x G. The corresponding infinitesimal

generator, {g- can be shown to be

A " "
Eg-(p) = —{u, & n) = = ({adgp, n), (3.1.10)
for all n € G. We have the identity,

(adiu, m) = (g, aden). (3.1.11)

Here, since G and G* are both vector spaces, their tangent spaces are isomorphic to
themselves. With the above construction, group G acts on @ and G* through the

actions ® and Ad* respectively. A map J:Q — G~ is called Ad”-equivariant if
Jod, = Adj..0lJ.
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For p € G*, we define the isotropy subgroup associated with it by

G, = {geG : Adjp = p}, (3.1.12)
with its Lie algebra

G = {n€G : adjp =0}, (3.1.13)

which is a subalgebra of G.
Next we introduce the notion of invariance. We say that a riemannian metric is
G-invariant if it is invariant under the pull back of the mapping ®,,i.e. forall g€ G,

¢, K = K, or in local coordinates,

K(z)(v, w)= K(g-z)(Tz®4 v, T,®,-w), VgeG, v, weTQ. (3.1.14)

It follows that the inner product on 7*@Q defined in (3.1.4) is invariant under the

cotangent lift, namely,

< 0z, o >1mq = < 8T oz, 81 B >1e0, (3.1.15)
for all ¢ € G. This can be shown by using the identities,

KE'.9T .o, = T.8,-K'-a,, fora, €TQ, (3.1.16a)

K T8, v, = &7 - K’ w,, forw,€TQ, (3.1.16b)

which follow easily from (3.1.2), (3.1.3), and (3.1.14). A smooth function V :Q — R is

a G-invariant function on the manifold if, for all g € G,
V(®4(z)) = V(z). (3.1.17)
Let Y be a vector field on Q. We say that Y is a G-invariant vector field if for all
gEG, (®y).Y = Y, o0r
Y(z) = T®,-Y(¢7'-z), forzeQ, geqG. (3.1.18)
Recall that a differential operator on the full tensor algebra can be defined from
its restrictions on functions and vector fields through the Willmore Theorem [74].
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Accordingly, the Lie derivative of a vector field on the tensor algebra can be found from
its Lie derivative on functions (directional derivative) and Lie derivative on vector fields

(Lie bracket). The following lemmas are essential to the developments in Chapter 5.

LEMMA 3.1.1

F¥or n € G, the Lie derivatives

Ly Y = 0, (3.1.19)

o K = 0. (3.1.20)

Proof

Both Y and K are tensors on . For a general tensor t on @, we have the

following identity, cf. p. 90 in [2]. for a vector field X € %(Q),
Lxt{z) = lin}) %((F;Y Yt (z) - t(a:)), (3.1.21)

where FX is the flow on @ associated with X . By choosing X = 7g, the infinitesimal

generator corresponding to 7, we have
(FeX )Y = (Pexp—en)xY, (FEX JE = (Qexpen) K.

Th lemma follows then from (3.1.14), (3.1.18), and (3.1.21).

|
Moreover, for two vector fields X;, X2 € %(Q), we have the following important
property.
LEMMA 3.1.2

For n € G, we have

an X, Ko, =K an X, Xoa >, + < Xy, LﬂQ Xo >, . (3122)

Proof

Here, < X1, X3 >, should be thought as a function on the manifold . The
LHS in (3.1.22) is thus the Lie derivative of a function with respect to a vector field.
Recall that a differential operator D on the full tensor algebra J(Q) has the following
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property, cf. [2], p. 88. Letting t € I7(Q), a1, -+, € @(Q), X1, -+, X, € %(Q),

we have
D(t(ala'"7aT7X1a"'aX3)) = (Dt)(al"”ya‘r,Xla'"7X3)

r
+ Z t(a].,"',Dajf"7a'ra-X17"'7Xs)
j=1

+ Z t(al"",a'r"aXla'"7-DXj7"'aXs)'
Jj=1

(3.1.23)

The Lie derivative L,y is a well-defined differential operator. By replacing D by L, ,

replacing t by K in (3.1.23), and using Lemma 3.1.1, the desired identity is obtained.

3.2. System Description

With the notions introduced in the previous section, we are ready to define

gyroscopic systems with symmetry.

DEFINITION 3.2.1

A Gyroscopic System with Symmetry is a 5-tuple, (Q, K, Y, V, G), where

(1) (@, K) is a Riemannian manifold.

(2) Y is a vector field on @, which is called a gyroscopic field.

(3) V is a function on @, which is called a potential.

(4) G is a Lie group with an action on @, which leaves K, ¥, V invariant and is
called the symmetry group.

(5) Within the framework of lagrangian mechanics (cf. Chapter 2), the system is

characterized by a Lagrangian L : TQ — R in the form of

L) = 2 K(2)(os, v2) + K()(vs, Y(2)) = V(o). (3.2.1)

The name “gyroscopic” comes from the second term in the Lagrangian (3.2.1),

which includes the gyroscopic field Y. This term is linear in the velocity variables and
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is responsible for the paradoxical behavior of gyroscopes. The Coriolis force in a rotating
reference system and the magnetic force due to electric currents are examples of the effect
of gyroscopic terms in the Lagrangian function. To see how the gyroscopic term enters
the dynamical equations, we restrict our attention for the moment to a gyroscopic system

(without symmetry consideration) on R™ described by the Lagrangian

L{z, v) = %vTM(:z:)v + 7Y (z) - V(2), (3.2.2)

where M(z) is a symmetric positive-definite second-order tensor, vectors z, v(= ) are
in R™, Y is amap from R" to R™, and V is a real-valued function. This is a gyroscopic

system in the sense of Definition 3.2.1 with

K(z)(v, v) = vTM(z)v, and Y(z) = M(z)"'Y(z).

Abstractly, Y should be regarded as a 1-form in T*Q.
To obtain the dynamical equations associated with the Lagrangian in (3.2.2), we
invoke the classical Euler-Lagrange equations, cf. (2.1.16). First, we find

oL -
0 = M(z)-v + Y(2).

By taking time derivatives, we get
d oL . oM oY
o0 = M(z)-v + (—é—;(z)v> ‘v + ax(z)-v,
where 9M/8z is a third-order tensor, and 8Y /dz is a second-order tensor. Recall the
definition of third-order tensors through triads,
(abc)- w = ab(c-w),

(abe) : (uv) = a(b-u)(c-v),

3

where “ . ” between vectors denotes some scalar product on IR™. Here, and in what

follows, a, b, ¢, u, v, w denote vectors in IR™. We have the identity, for a third-order

tensor T,

T :(uv) = (T-v)-u

With these notations in Tensor Algebra, see, e.g. [4], we may write
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d oL ) oM )%

Next we find the partial derivative of L with respect to z as follows. By definition,

%) d
—@TM(z)w) w = — vIM(z + ew)o,
oz de |, g
d M
= o , M(z+ew):(vv) = (%(m)w) : (vv).

We need the following lemma.

LEMMA 3.2.2

Let T be a third-order tensor, we have the identity

(T-w) : (uv) = (T*:(uv))-w, Vuv,w,
where T™ is a third-order tensor defined by
- A
T u-v-w =T -w-u-v, Vu,v,w,

and is called the eyclic transpose of T'.

Proof
Since the triads form a basis for the space of third-order tensors, we only need to

prove the lemma for triads. By definition, we have

((abe)-w):(uv) = (a-u)(b-v)(c-w).

It is easy to check that for a triad

(abc)™ = cab.

Since we have,

((cab): (uv))-w = (a-u)(b-v)(c-w),

the lemma follows.

From this lemma, we can write
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(Gr@w) : @ = (G @:0m)w

Thus we get
d oM™
—a—x(’UTM(m)’U) = 7 (z) : (vv). (3.2.4)

On the other hand,

0 .
=TV (@) w

]
/-—\ Q_‘
Q| @
RI"<:
—~

8
p

bl
~—

1l
TN
QO @
ii"‘ﬁl
~

B

e
N—

g

where the superscript 7 denotes the transpose of the second order tensor. Thus we have

T
(T;?;(vry(x)) - ‘?z, ()-v. (3.2.5)

By substituting (3.2.3),(3.2.4),(3.2.5) in the Euler-Lagrange equations, we get
- 5 T
. oM aYy 1oM~ aYy ov
M(:z:) v+ 3;;—(2:) : (’U‘U) + -87(33) v = '2- "a—x‘- (l‘) : (’U’U) + a_.’l) (IC) v - '—;(I).

By combining terms, it follows that,

. 10M* . OM, oy . ov” oV
M@ = (350 @) @) () - <3—z(x> -2 (x)) v - S

Oz
Define
R 2 Qg(m)—ng(x), (3.2.6a)
FERRAr
T2 %%*(m)— %"f—(m). (3.2.66)

The equations of motion can be then written as, by noting that v =z,

M(z)-i = T-é-¢ - R-& - %g—(:c). (3.2.7)

Note that R is a skew-symmetric tensor, thus the second term in the RHS gives the

gyroscopic force in the dynamical equations as discussed in [13]. We remark that the
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component form of M(z)~17 is nothing but the Christoffel symbol associated with the

geodesic flow. Cf. e.g. [2].

EXAMPLE 3.2.3

We consider the dynamical system treated in [13] in the following form.

¥ = —az - gy,
(3.2.8)
¥ = -By + gz.

The skew terms in velocities g9 and gZ constitute the gyroscopic forces which do no net

work but affect the stability of the system. It is easily checked that this is a gyroscopic

system with the Lagrangian in the form of (3.2.2) with the following entities,

M = (g 1) Tew = (§). vew = 360 (5 5) (5):

Now we go back to the abstract framework of the gyroscopic systems with
symmetry. We remark first that a simple mechanical system with symmetry in the
sense of Smale [64] is a special case of the gyroscopic systems with symmetry. We simply
take Y = 0 and consider the quadruple (@, K,V,G). In this dissertation we show
that many key results in the category of simple mechanical systems with symmetry can
be extended to gyroscopic systems. For a gyroscopic system with symmetry with the

Lagrangian (3.2.1), we have the following lemma.

LEMMA 3.2.4

L is invariant under the tangent lift 7.

Proof
We need to show that, for all g € G, (@Z)*L = L,or,

L(®T - v;) = L(va).

We proceed as follows.
1
L(37 -v:) = 5 K(g-2)(Tx8g - vz, T:x 2y )
+ If(g ' I)(Tz@g *Vpy }f(g . JC)) - V(g . x)_
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By the G-invariance of the gyroscopic field Y, (3.1.18), we can write
L(®T -v;) = %I((g-x)(Tz@g-vz, T:®, - vz)
+ K(g-2)(T.8, - v., T8, -Y(z)) — V(g-2).
= S K(@)ver 2) + K)o, Y(2) = V(@)
L(vz),

by the invariance property of the metric X' and the potential V.
i

The Legendre transformation corresponding to this Lagrangian can be found as

follows, cf. (2.1.7),

d
(EL(’U@), 'UJ:z:):z: = D2L(’Uz) cW, = :l: L(’Uz + ewz),
e=0

d

== LV + €Wy, Vp + €Wy Dy + K 0z + €W, Y(2) > ~V(2),
e=0

L v+ Y(“'), Wg 2z,

(K*(vy + Y (2)), wz)z-

We thus have

£r(vg) = K°(vgp +Y(2)). (3.2.9)

LEMMA 3.2.5

The Lagrangian L in the form of (3.2.1) is hyperregular.

Proof

The inverse of the Legendre transformation can be found as, for a; € T*Q,

z;l(a?) = K%az) - Y(2). (3.2.10)

It follows that £; is a diffeomorphism, and thus L is hyperregular.

From Lemma 3.2.5, and the comment after Lemma 2.1.2, the space (TQ, Q= -dOL)
is a symplectic manifold, where the symplectic form Q7 is defined as in (2.1.6) through

the 1-form O, which in turn can be written as
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Or(vz) (v,w) = K(z)(v+ Y(z), u).

With Lemma 3.2.4, the group G acts on TQ through the tangent lift &7 as a symmetry
group. It can be further verified that this action is symplectic, namely, (8T)*Qp = Qy.
Within this framework, the momentum mapping J : TQ — G* can be thus defined such
that the infinitesimal generator of the action ®7 corresponding to & € G is the vector
field induced by the function

(7,6 : TQ — R,
through the symplectic structure, cf. (2.1.12b). Consequently, we have the following

theorem.

THEOREM 3.2.6

The gyroscopic system with symmetry (@, K,Y,V,G) has the following properties.
(i) The 1-form corresponding to L defined in (2.1.5) is invariant under the tangent
lift, i.e.

@ e, = or.

(ii) There is an associated Ad*-equivariant momentum mapping J : TQ — G*, in the

form of
J(v:)(€) = (Lr(vz), EQ())e = K vz + Y (2), bo(z) >z, (3.2.11)

where £ € G is an element in the Lie algebra of G, £g(z) denotes the infinitesimal

generator of £ on Q. The notation G~ denotes the dual of the Lie algebra G.
(iii) The momentum mapping defined in (3.2.11)is a vector-valued integral of any vector

field induced by a G-invariant function on T'Q through an analogous formula in

(2.1.12). In particular, it is an integral of the Lagrangian vector field Xp, .

Proof
For (i), we note that (@g)*L = L, by Lemma 3.2.4. Since the exterior
differentiation commute with the pull back operator, (i) follows immediately. Statements

(ii), and (iii) can be shown by directly applying Theorem 4.2.2 and Corollary 4.2.14. in
[2].



The quadruple (T'Q,Q, @7, J) is an example of hamiltonian G-space. The energy

function for the gyroscopic system can be found as, cf. (2.1.11),

Hp(vs) (€r(vz), vz)e — L(vz),

1
=<K v +Y(z)77)a: D - 5‘ L Vg, Vg D — K ’Ux,Y(IE) >z + V(x)7

1

The energy function for the system is not affected by the gyroscopic field Y. However,
the dynamics are different from what one would see if Y = 0. . The differences in
the dynamical behavior inherit from the different symplectic 2-form Q; associated with
different Lagrangian L. In particular, the gyroscopic term in the Lagrangian gives rise
to the magnetic terms in the symplectic 2-form. On the other hand, on the momentum

phase space T*@Q, the Hamiltonian associated with the system is

H(az) = Hpo Kzl(ax),

= = <« K¥a,) - Y(2), K¥(as) - Y(z) >; + V(2),

[SCY R S

< ap - K¥(Y(2)), ap — K°(Y(2)) >1-q + V(z).  (3.2.13)

Consequently, on the momentum phase space, the Hamiltonian is affected by the

gyroscopic term through the momentum shift, with the canonical 2-form wy unchanged.

EXAMPLE 3.2.7

We consider again the system in Example 3.2.3. The energy associated with

(3.2.15) on TQ is

. 1., .
Hi(z,9,4,9) = 5 (¢ + ¥ + az® + By?),

with the symplectic 2-form in matrix representation

0 0 1 0

-n\T _ 0 0 0 1
Q™) = | 1 ¢ o g (3.2.14)

0 -1 g 0

This can be checked from the equation, cf. (2.1.12c),
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x = Xmy(x) = ([0u])T Vi Hp,

where x = (z,y,%,9). The right-lower 2 x 2 block in ([Q L]‘I)T is called the magnetic
part. On the other hand, on T*Q, we have the conjugate momentum variables defined
by

=z + gy,

P2 =Y.

The dynamical equation (3.2.8) can be written as

¢ =p - gy,

¥ = pa,

= - az,

P2 = =By + g9(p1 — 9y),

which is a hamiltonian system with the Hamiltonian function
1
H(z,9,p1,7) = 5 (1 —9gv)’ + P} + a2’ + B7°).

The symplectic structure is the canonical symplectic 2-form wy, i.e. in matrix represen-

tation,
0 0 1 0
|'w ] - 0 0 0 1
0 -1 0 00
0 -1 0 O

In summary, the gyroscopic term affects the symplectic 2-form on T'Q side while,
on T*Q side, it affects the Hamiltonian function. To gain more insight about how the
gyroscopic field enters the symplectic structure 7, we consider an even simpler case
than (3.2.2). We assume that the second-order tensor M is independent of z in (3.2.2).

It can be easily found that the symplectic 2-form is now, cf. (2.1.6),

Qr(g,v) ((u1, w1), (u2, w2))

:%Z—.u,z-ul + M-’UJQ"U,l - %}-;-ul-ug bt M"Ll)]_"ll2

" o T
.88%:,_— g_}x, M Uz
=(ur w) - k ( .
-MT 0 w2
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: o T
The block %;: - % is the magnetic term.

3.3. Reductions

For the gyroscopic systems with symmetry (@, K,Y,V,G), we may reduce the
system dynamics to a lower order system by utilizing the symmetry properties. The
reduction process has a long history. For Jacobi and Liouville[2] [5], this meant we could
reduce the Hamilton’s equation with some first integrals in involution. For Routh [58],
this meant a process of eliminating ignorable variables. In the following, we shall discuss
the reduction of our system from two points of view, namely, symplectic reduction and

Poisson reduction.

First, we perform the symplectic reduction in the sense of [48]. As discussed in
Chapter 2, (TQ, Q) is a well-defined symplectic manifold, since L is hyperregular
(see Lemma 3.2.5). By the Property (i) in Theorem 3.2.6, the Lie group G acts on
Q symplectically, i.e. preserving the symplectic structure. Also, from Property (ii)
in Theorem 3.2.6, there is an Ad*-equivariant momentum mapping J for this action.
Thus all the conditions in the Symplectic Reduction Theorem, see Theorems 4.3.1, 4.3.5,
pp. 299, 304 in [2] are satisfied, we can thus state the following reduction theorem

corresponding to the gyroscopic systems with symmetry.

THEOREM 3.3.1

Consider the gyroscopic system with symmetry (Q,K,Y,V,G). Assume that
i € G* is a regular value of the momentum mapping J, as defined in (3.2.11), and
that the isotropy subgroup G, defined by

G, = {9€eG : Adjap = p},
under the Ad* action on G* acts freely and properly on J~1(u), then

(TQ)u £ J7Hu) / Gu

has a unique symplectic form §2, with the property
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* - =
W“Qu = Z”QL,

where 7, : J7(u) — (T'Q), is the canonical projection and i, : J~(u) — TQ is the

inclusion map. Moreover, the flow F; of X, induces a flow Ff* on (T'Q), satisfying

— p#
T, Fy = F{ -7,

This flow is a Hamiltonian flow on (7'Q), with a Hamiltonian function H} satisfying

73 - .
HL-TX’“ = HL-'Z,,,

with respect to the symplectic structure Q,,.

The function H} on the reduced space is called the reduced energy. The corresponding
vector field Xyu on the reduced space (T'Q), is called the reduced vector field. With
the symplectic reduction, we thus first restrict our consideration to the level sets of the
momentum mapping, and then factor out the isotropy group.

Next, we consider the Poisson reduction [47]. We first review basic framework
for a Poisson manifold. A Poisson manifold P is a smooth manifold equipped with an

R-bilinear map (Poisson structure) on the space of smooth functions,

{}p 2 CF(P) x CF(P) = C=(P)

satisfying the axioms, for f,g € C*=(P),

(l) {f,g}P = - {g’f}P
(11) {fgah}P = g{fah}P + f{g’h}P
(iii) {f, {g.h}p }p + {9,{h. f}P}p + {h,{f.9}P}p =0.

Associated to a Poisson structure, there is a unique twice contravariant skew-

symmetric, smooth tensor field A on P such that

{fvg}P = A(df,dg),

where df , dg are differentials of f, g, respectively. The tensor field A defines a vector-

bundle morphism,
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A*¥:T*P - TP
a, — A¥(a,) € TP

satisfying,

Bz (A*(az)) = A (z) (0g,Bz) for all B € TsP.

Let G bealiegroupandlet ¥:G x P— P, (g,z) ¥,(z), bea group
action such that W,(-) is a Poisson morphism for every g € G,ie. ¥,: P — P is
an isomorphism and preserves the Poisson structure. Suppose that the action is proper
and free. Then the quotient space P/G is a manifold which carries a Poisson structure

{*,'}p/c induced from the one on P satisfying, for f,g € C*(P/G),

{f,g}p/GO'lT = {f°7rs gOW}P' (3.3.1)

Here 7 : P — P/G is the canonical projection. By construction, it is a Poisson
morphism.
G -equivariant dynamics on P induce dynamics on P/G. Suppose h: P - R

is a G-invariant Hamiltonian function on P ,i.e.,

h(¥,(z)) = h(z) YgeG.

Define a vector field X; through
Xulf) = {f, h}p VY f e C=(P). (3.3.2)
The Hamiltonian h descends to & : P/G — R and determines a Poisson-reduced
dynamics Xj; on P/G by
X; [f) = {F, R}pic VfeC™ (P/G). (3.3.3)
Here h ([z]) = h(z) for an equivalence class [z] in P/G.

Recall that the symplectic manifold (TQ,€1) has a canonical Poisson structure

induced from the symplectic structure, namely, for f,g € C*(TQ),

{f, 9}e(vz) £ df(v)- Xo(v:) = Qu(vz)(ML(df), ML(dg)), (3.3.4)
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cf. (2.1.10). Since the energy function Hy is G-invariant, we carry out the Poisson
reduction as follows. Assume G acts on T'Q freely and properly. Let 7 be the projection

from TQ to TQ/G, f,§ € C>®(TQ/G), the induced Poisson bracket of f and § is
defined analogous to (3.3.1) as

{f, §}ioF = {fof, go#}L. (3.3.5)

Within the framework of Poisson reduction, we have the following elements.

Hypo#(v;) = Hip(vg), (3.3.6)
X, Ul = {f, HLli, V FeC™(TQ/G). (3.3.7)

Here the vector field Xz is called the projected Hamiltonian vector field on TQ/G.
The reductions discussed here is on the Lagrangian side, or TQ side. We could
perform similar reduction process on T*Q side, or Hamiltonian side, by noting that the
Hamiltonian function on T*@Q, namely H in (3.2.13),is invariant under the cotangent lift
®T" (this could be derived from (3.1.15), (3.1.16)). This is usually the setting discussed
in the literature regarding simple mechanical systems with symmetry. For comparison,

we include the framework of gyroscopic systems with symmetry on the 7"*@Q side.

DEFINITION 3.3.2

A Gyroscopic System with Symmetry is a 5-tuple, (Q, K, Y, V, G), in which
(1) (@, K) is a Riemannian manifold.
(2) Y is a vector field on @, a gyroscopic field.
(3) V is a function on @, a potential.
(4) G is a Lie group with an action on @, which leaves K, Y, V invariant and is
called the symmetry group.
(5) Within the framework of hamiltonian mechanics, the system is characterized by a

Hamiltonian H : T*Q — R in the form of

H(oz) = % < o; - K°(Y(2)), @z — K*(Y(2)) >1-q + V(2). (3.3.8)

where < -,- > is the induced metric on T*Q defined in (3.1.4).

41



Since the two definitions 3.2.1 and 3.3.4 are equivalent, we will use the terminology
gyroscopic systems with symmetry to refer either one of them, depending on what the
underlying space is. The reduction on T*@Q side could be performed in a similar way.
The symplectic manifold is (7@, wp), cf. (2.1.8), with the corresponding momentum

mapping, ; 0 ;
. T* . xu,

(J(az), &) = (az; {ol@))s-

These two reduction processes are equivalent, but the one on T'Q side seems to be more

(3.3.9)

intuitive.

3.4. Principle of Symmetric Criticality

In this section, we introduce the notion of relative equilibria and discuss their
characterization. The concept of relative equilibrium goes back to Poincaré. With the
symplectic reduction process, we define the notion of relative equilibrium as follows,

cf. Theorem 3.3.1.

DEFINITION 3.4.1
A point vy in TQ is called a relative equilibrium if 7,(v;) € (TQ), is a fixed

point for the reduced vector field Xz , where p=J (vz).

Within the framework of Poisson reduction, we may define a similar notion, cf. (3.3.6),

(3.3.7),

DEFINITION 3.4.2

A point v, in TQ is called a relative equilibrium for Xg, if

XI?L (f(vx)) = 0.

It turns out that the two notions of relative equilibrium, Definition 3.4.1, 3.4.2, are

equivalent. It can be shown, cf. [2], that, for both cases, v; is a relative equilibrium iff

42



there exists a £ € G such that the flow of Xp,,

F)t{HL (vx) = @exp(tg) (vz)y (3.4.1)

i.e. the dynamical orbit is simply a group orbit. Thus if the observer were to be set in
uniform motion according to the one-parameter group exp(t£), then for such a moving
observer, a relative equilibrium will appear to be stationary. For instance, if G = §O(3),
then F}(HL (vz) corresponds to a uniform rotation about a fixed axis ¢ in space with
the rotational speed |£|. In celestial mechanics, a relative equilibrium corresponds to
exactly the state of circular motion of the bodies.

To characterize the relative equilibrium, we recall the following Souriau-Smale-

Robbin Relative Equilibrium Theorem recast for our problem.

THEOREM 3.4.3

vy € TQ is a relative equilibrium for X iff there exists a £ € G such that v, is

a critical point of

He = Hp - (J, &), (3.4.2)

where (J, £):TQ — R is a real-valued function given by vz — (J(vz), £).
|

In particular, for the gyroscopic systems with symmetry, we have, cf. (3.3.9),
(3.2.12),

He(vy) = = € v,y 12> + V(2) - €v:+Y(2), o(z) >,

RO N =

<L v — §Q(x)s Vr — fQ(-’D) >z

+ V(z)- € Y(z), o) >< --12- < €ofz), Eo() >z . (3.4.3)

From Theorem 3.4.3, it is then easy to check that the necessary conditions for v, to be

a relative equilibrium are

vz = Eo(z), (3.4.4)

and
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1
d:[V(z) — <Y (z), o) >z - 5 < €o(z), &o(z) >3] = 0.
We thus have the following algorithm (principle of symmetric criticality) to find relative
equilibria.
ALGORITHM 3.4.4
0. Pick £ € G.

1. Search for the critical points z. of the function
Vg: Q — R

3.4.
Ve(z) £ V(z) - «Y(z), Eo(z) > — % L €g(z),éo(z) > (3:49)

2. Substitute z. in (3.4.4) to find the corresponding v, = {o(z.).

We note that the computation in step 1 is fully on the configuration space. Thus the
process of searching for a relative equilibrium is greatly simplified. We remark that,
for simple mechanical systems with symmetry, the principle of symmetric criticality
stated above appears as Theorem 1.1 in Part Il of Smale[64). Smale also notes that
special versions have been known earlier, e.g. in the study of symmetric geodesics.
See also p. 355 of [2], Theorem 16.7 in Hermann[31], Arnold[6], and Palais[51]. Here the
augmented potential function V¢ has one additional term to accommodate the gyroscopic
effects. Through this term, we may change the number of critical points as well as the
locations of them. Consequently, the phase portrait will be changed. This provides us
an efficient tool to control the phase portrait. These comments will be made clear in the

following chapters.

There is an additional symmetry in the augmented potential V;. First, we define
the stabilizer of £ to be '

Ge = {9eG | Ad,(H =&} C G, (3.4.6)

where Ad is the adjoint action of G on G defined in (3.1.7). G¢ is actually a subgroup

of G, and thus defines an action on Q. We have the following lemma.

LEMMA 3.4.5

Vg is invariant under the action of G¢ on Q,ie.
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Ve(®y(2)) = Ve(z), VgeQGe (3.4.7)

Proof

By a similar argument as in the proof of Lemma 3.2.4, we have
Ve(g-z) = V(g-2) — K(g-2)(Y(g-2), £olg-2))
~ 3K(5-2)(¢alg ), alg-2),
V(z) - K(z)(T®;" -Y(g-z), T®;" -£q(g-2))

- SK(=)(T8;" olg-2),T2;" - qls =),

since K is G-invariant. Moreover, for g € G¢,

T@;l lolg-z) = T@;l [ ®ezp g - By(2) ],

[Qg_l-exp e{-g(x)] = [Qexp € Adg_lf(x)]y

£q(z).

With the above identity and the invariance property of Y, the lemma is proved.

We assume that the quotient space Q/G¢ is well defined. Denote the projection from
Q to Q@/G¢ by m¢. By Lemma 3.4.5, we could define an induced function Ve on Q/G¢

from the augmented potential such that the diagram in Figure 3.4.1 commutes, namely,

Vg o] 7!'5 = V} (348)

T V'e

Q/Ge

Figure 3.4.1. Symmetry of V;
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Typically, V¢ is a Morse function on Q /Ge and w; () is a nondegenerate critical

manifold in the sense of Bott[12], if Z. is a critical point of V.

EXAMPLE 3.4.6

One application of the principle here is to find the relative equilibria of the planar
three-body system discussed in [65] [66]. If we plot the function V; (for particular
kinematic parameters) on the joint space, we get the picture in Figure 3.4.2, from which
the fundamental equilibria defined in [65] [66]can be easily seen. These are the relative

(joint) configurations (0,0), (0,x), (x,0), (x, 7).

) ¢)

XN
BOGOD(

Figure 3.4.2. Function V5 for the planar 3-body problem

As remarked at the end of Section 3.3, the reduction could be worked out on the

Hamiltonian side. Thus there is a similar algorithm corresponding to Algorithm 3.4.4

on the T*Q side. We include it here without derivation, which could be easily done in
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an analogous way.

ALGORITHM 3.4.7

0. Pick £ €G.

1. Search for the critical points z. of the function
VEI Q — R

V@)= V(@) - <Y(2), €(z) 32 - 5 < £a(a), olz) -

2. Find the corresponding conjugate momentum variable p., by putting z. in the

following formula.

p. = K*(Y(z.) - €g(z.)). (3.4.9)

The point (z., p.) in the momentum phase space T*Q is then a relative equilibrium

corresponding to the reduction on 7@ with respect to the cotangent lift action.

3.5. Two Rigid Bodies Connected By a Ball-In-Socket Joint

The previous section provides us with a variational principle on configuration space
for determining relative equilibria. In this section, we apply the principle of symmetric
criticality to a problem of coupled rigid bodies. For simplicity, we consider here only a
simple mechanical system with symmetry. Later in Chapter 7, the gyroscopic systems
with symmetry will be discussed further. This section closely follows the work in {70].
A similar example was considered in [52], [53].

First we describe the kinematics of a mechanical system consisting of two rigid
bodies connected by a spherical joint. Two bodies, with masses m;, my, are free to

move in three dimensional Euclidean space, subject to a (three-degrees-of-freedom) ball

and socket coupling (See Figure 3.5.1). We introduce the following notations.
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Figure 3.5.1. Rigid Bodies connected by Ball-in-Socket Joint

! inertial frame of reference ip Space.

! origin of the inertjal reference system.

* center of mass of body 1.

* center of mass of body 2.

¢ orthonormaj frame op body 1 with origin at M.

: rotational coordinate transformation matrix from I to Iy.
: orthonormal frame on body 2 witp origin at M, .

! rotationa] coardinate transformation matrix from Tz to Iy,
: vector from the Jjoint to M in the frame I;.

¢ vector from the Jjoint to M; in the frame r,.
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r1: vector from O to M, in frame T.

r9: vector from O to M, in frame Ty.

ro: vector from O to the system center of mass in frame T.

m: total mass (= m; + m2).

@1: vector from M; to a point of body 1 in the frame T;.

q1: vector from O to the same point of body 1 as Q, above in the frame Ty.
Q2: vector from M, to a point of body 2 in the frame I'5.

g2 : vector from O to the same point of body 2 as @, above in the frame T .
w: vector from O to the joint in the frame Ty.

From the above descriptions, we have the following kinematic relations,

q =11+ B1Gn, (3.5.1a)
g2 = 12 + B3Q)s, (3.5.1b)
mrg = myry + mory, (3.5.1¢)
r1 = w + Byd;, (3.5.1d)
Ty = w + Bad,. (3.5.1e)

Also we know that B; and B, belong to the special orthogonal group SO(3).
Let p1(-) denote the mass measure of body 1 in the frame I'; and po(-) denote
the mass measure of body 2 in the frame I';. The kinetic energy of body 1 can be thus

written as
1 .
T = 5/ | 61(Q1) Pdpa(Q1).
B

Expanding the above by using (3.5.1a), (3.5.1b) and the formula |z |* = tr(zzT), we

have the form
.2 1, .
T, = Tz‘l‘| 1 |* + ‘2‘757'(31[13{)-
where I is the coefficient of inertia of body 1, defined by

L2 j Q197 dus (Q1),

and tr(-) denotes the trace of a matrix.
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The kinetic energy of body 2 has a similar form. We thus have the total kinetic
energy expressed as

T=T1+T
(3.5.2)

my . . 1 . . me, . 1 . .
= Tll 1 l2 + EtT(BllelT) + —2-| ) ]2 + itT(Bzngg).
By (3.5.1¢c)-(3.5.1e), we may write the total kinetic energy in terms of the total linear

momentum p = mry of the system.

1 . . 1 . . £ . . 1
T= ‘2‘“‘(31-7131T) + itT(BzszzT) + 5] Bydy — Bady |* + ‘2‘;1'|Pl2-

a . . . .
Here ¢ = mymy/(my + m2) is the reduced mass. Since there is no potential assumed,

this is also the Lagrangian of the system.

The configuration space is §O(3) x SO(3) x R®. The system is invariant under
translation of the inertial reference frame, i.e. we have a symmetry group action on the
configuration space

3:R* x (SO0(3) x SO(3) x R?) — SO(3) x SO(3) x R3
(A, (B1,B2,7)) — (By, B2, A+ 7).

We can symplectically reduce the system by R> (see [48], [2]) which in turn
corresponds to jumping to the center of the inertial frame. This is also done in [27]

and for planar problem in [50][65][66]. After this reduction, the reduced Lagrangian is

= Et’l’(BlIlB]:_r) + EtT(BzIQBg‘) + -'2'" Bidy — Bqd, |2. (353)

which is a function on T(SO(3) x SO(3)).

Although the mechanical system considered here is exactly the same as in [27],
the Lagrangian is expressed in terms of coefficients of inertia referred to different body
frames than the one they use. Ours is based on the body frames affixed to centers of
mass. By applying the formula for change of coefficient of inertia by translation, one
checks that the results are the same.

Now we put the system in the category of simple mechanical system with symmetry.

The Riemannian metric on T(SO(3) x SO(3)) is given by the (symplectically) reduced

Lagrangian as
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< (Wi, W), (W1, W) >= tr(W, [LWT) + tr(W, LWY)
£ | W1d1 - ngg |2.

where (W;,W;) belongs to T(SO(3) x SO(3)). We know that every element in
T(S0O(3) x SO(3)) can be represented as in, cf. Section 2.2,

T(50(3) x SO(3)) = {(By, Bz, w1 By, 9, B,) :
By, B; € SO(3), wy,w; € R%},
where “:RR? — 50(3) is defined in (2.2.1). In terms of w;, wy, We have
< (Wl,Wg),(Wl,Wz) > = tT(’lD]_BlIIB;r’L‘DIT) + tT(w2Bznggwg)

+ € I 11)1B1d1 - ’lf)ngd2 |2.
As shown in (2.2.2e), we have the following relation,

tr(@ I o) = <w, Iw>E, (3.5.4)

where <, >g is the Euclidean inner product, and, with the physical interpretation, I is
the coefficient of inertia tensor and I is the associated moment of inertia tensor related

by the formula in (2.2.2e). Upon further simplifications and rearrangements, we get

J1 J BT w
& (W, We), (W1, Ws) >= ((Bf w1)T (ngz)T) ( :,1‘ 12) ( }_,. 1> , (3.5.5a)

where

Iy =1 + edldy

[ 3]
)
I

I, + edld, (3.5.5b)

le = Sdale‘Bg(ig

The group action to consider is defined on SO(3) x SO(3), the configuration space,
relative to an observer at the system center of mass. The diagonal action of the group
G = S0(3) is given by

T:G x (S0(3) x SO(3)) = SO(3) x SO(3)

(3.5.6)
(R’ (Bly B2)) Lad (RBl, RBZ)

Letting € € G, the corresponding infinitesimal generator can be found as
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d
€q(By1,By) = m

(expe £)(Ba, By)
=0

€

(3.5.7)

7| _ (exped) By, (expe) By)

= (EABI ) £B2 )‘
Since here the potential energy V is identically 0, and the gyroscopic field vanishes, i.e.

Y =0, the function V¢, cf. (3.4.5), is

1 w3 J BT
Ve(B1,By) = -3 ((BTe)" (B%‘f)I)(JlTZ ;j)( ng) (3.5.8)

It is clear that V¢ is invariant under G¢ = {R € G: RE = ¢}, cf. (3.4.6),(3.4.7), which
is isomorphic to S!.

By the compactness of SO(3) x SO(3) we know that for each &, V¢ has critical
points. We need to find the conditions on By, By so that the gradient of V; with respect
to By, B is 0. Equivalently one can check the vanishing of the differential dV; on the
space T(50(3) x SO(3)). Let W € T(SO(3) x SO(3)),

W = (By, By, W1 By, W, B;).

The curve in SO(3) x SO(3) generated by W is (e!®* By, e*¥2B,). Thus we have the

formula

d . )
dV¢(By, By)(W) = i Ve(e!™ By, ™2 By),
=0

t=

Explicitly, we get the following final form (here B = B] B,),
dVe(B1,By) W =

< wy,EBY I BTE >p + < wy, By, BY € >
+¢& < w,€B1dBdy BT€ > +¢ < wy,€Byd; BTd1 BT € >
e <wn,Bidi€ By, BYE >
+e< wz,B’;E;E B1d\B{ ¢ >
Thus we know that the necessary conditions for a critical point of V; are
£B,3, BTE + e £Bydy By BY€ + ¢ Brdy Bydy BFE = 0,
£By3,BT€ + ¢ éBydy BTdy BT + ¢ Bydyé Bydy BYE = 0.
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Now if we define Q; = B¢, and Q, = BY¢, we get the conditions (in terms of cross

products in R?)

Q1 % J1Q1 4+ ¢edy X (Ql X B(d2 X Qg)) =0, (359&)

Q2 x J2Q + eda x (2 x BT(d; x 1)) =0, (3.5.9b)

which are exactly the conditions found by Poisson reduction in [unpublished notes of
P.S. Krishnaprasad]. In step 2 of the Algorithm 3.4.4 in Section 3.4, we put in the B,

B; found by solving the above conditions into

v = {o(B1, Bs).

Let v € T(g,,B,)(SO(3) x SO(3)) be represented as

v = (l:)lB]_,(:Jng).

We find that wy, w, is nothing but
W = Wy = f

The conjugate momentum variables at relative equilibrium could be found from (3.4.9)

as follows. Let p € T(p, 5,(SO(3) x S0(3)) be represented as

p=(81A1,8242).

We find that ay, as can be expressed as

oy = 4110 + ¢ (A1dy X Az(dg X Qg)),

g = ATy + € (A2d2 X A1(d1 X Ql))

Now we derive a necessary geometric condition for relative equilibria. The relation

between ; and 5 is

Ql = BQz

If we let s; = Bidy, sy = Bads, from (3.5.9a), we get
BTex 3,BTt + ¢ BYs; x (BT ¢ x B(BY s; x B{ €)) =0,
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which implies
EX ByJBYE + 65y x (£ x (8 xE))=0. (3.5.10)
Taking the inner product of (3.5.10) with £, we obtain a key necessary condition for a
relative equilibrium
£-(s1%Xs82)=0. (3.5.11)
We note that £ is the axis of rotation of the whole body, s;, s; are the spatial vectors

from joint to body 1 and 2, respectively. From (3.5.11), we conclude that, at relative

equilibria, £, sy, s2 must lie on the same plane, no matter what the inertias are.

REMARK 3.5.1

We note without proof that ©; = B and Q; = By satisfy two additional

conditions:
(a) @, is an eigenvector of Ijoc,

(b) Q; is an eigenvector of BTI;,.x B, where

Lok = J1+ BI;BT + BI], + J12BT (3.5.12)

is the locked inertia dyadic of the system of two bodies referred to the body 1 frame.

_ |

Although we can get the same critical conditions (3.5.9a) (3.5.9b) by other methods,
the principle of symmetric criticality provides more information. Notice that in the
first step of the Algorithm 3.4.4, we simply try to find the critical points of V;
on SO(3) x SO(3) without any additional constraint. Thus one has an associated
unconstrained optimization problem. Numerical optimization schemes can be used to
find relative equilibria of minimum or maximum type. This issue is discussed in the
following.

By the symmetry of the system, we know that the function V¢ is invariant in the
direction tangent to the orbit of G¢. Thus in the search for critical points, we should
avoid these directions. It turns out that the usual gradient-type method is a good choice.

Here, we use an optimization package named CONSOLE which was developed at the
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University of Maryland[20]. The current version of CONSOLE basically uses the steepest
descent method and is thus applicable to our circumstances.

In formulating the optimization problem, in order to avoid other constraints arising
from the restrictions on SO(3), e.g. ATA = Identity, we use Cayley’s parametrization.

That is, any element A € SO(3) can be represented by

. 1+ai—-ai-a2 2(a1a2 ~a3) 2(a1a3 + az)
= Td+ad+d 2(a1a2 +a3) l-ai+ai-ai 2(aza3 —a) |
2(a1a3 — ay) 2(aza3 +a;) 1-a?—ad+dd
(3.5.13)

where ay,a2,a3 € R. The problem can now be written as

extremize Ve( B, By)
a1,a2,0a3
bl ’ b27 b3
where (a1, a3,a3), (b1,b2,b3) are the parameters for By, B;, respectively.

The CAD package CONSOLE is composed of two main programs: CONVERT,
SOLVE. CONVERT reads a problem description file which describes the optimization
problem to be solved. SOLVE then performs the optimization process with the
interaction of user and/or some simulator. For more details, see Fan et el. [21}, [19].

The problem description file for our problem is easily formulated in Table 3.5.2.
Table 3.5.2. Problem Description File

design_parameter al init=0
design_parameter a2 init=0
design_parameter a3 injit=0

design_parameter bl init=0
design_parameter b2 init=0Q
design_parameter b3 init=1
objective "V-xi"
minimize {
import ai, a2, a3;
import b1, b2, b3;
double cost();
ieturn cost( ai, a2, a3, bi, b2, b3 );

good_value=0

bad_value=100
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where the subroutine cost() reads a system description file containing the information
of Iy, I3, dy, d3, §, my, my and then returns the value of the function V. By choosing
different moments of inertia and initial structure, we can perform the optimization. In
the process, one thing we learned is that if the augmented inertia is diagonal, the rate
of convergence is faster. Thus preliminary diagonalizations should be performed to get
speed up.

In the particular case that

my = 3.0, mq = 2.0,

dy=(001), dy=(-111), £€=(001),
2 0 0 3 0 0

L={0 3 0], L=|0 4 0],
0 0 4 0 0 5

the relative equilibrium we found by numerical methods was

0.0 —0.939 0.344 0.007 0.350 —0.937
By=|00 -0344 —-0939 |, By=|-0528 0796 0294 |,
1.0 00 0.0 0.849 0.493  0.191
s1 = (0.344 - 0.9390.0), s, = (—0.593 1.618 — 0.165),

Q; = (1.0 0.0 0.0), £, = (0.849 0.493 0.191).

Several relative equilibria corresponding to different choices of parameters are shown in

Figure 3.5.3. Case 1 in that figure corresponds to the above numerical result.

Note that in all cases, either s; = Bidy, s = Bady are on a straight line or they

and £ are on one plane. It matches with the condition (3.5.11).

56



Case 1
3
4 [001]
[ 0.344 -0.939 0 |
B1 d4 >
Bado
[ -0.593 1.6182 -0.1646 ]
Case 2 '\
[001]

3\ By d1
/[ -1.3966 -0.1311 0.1796]
>
Baodo

[ 2.2134 0.2081 -0.2397 ]

)

Case 3
[001]
3

ﬁ [ -1.2868 0.5866 0 ]

[ 1.2868 -0.5866 O ] Bodp
B dq >

Figure 3.5.3. Relative Equilibria Configurations
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CHAPTER IV

Hamiltonian and Dissipative Systems

Among the most important dynamical systems encountered in physical sciences are
the conservative systems (including the hamiltonian systems) and those exhibiting some
types of dissipation [57] [29]. In this chapter, we discuss how dissipation may enter into
a hamiltonian system and how it can affect the dynamical behavior. Typically damping
mechanisms drive a system asymptotically to a stable equilibrium state. However, it
is not necessary to put damping at every interconnection. Partial damping may either
damp the system out or drive the system into an nontrivial motion. These issues will be

addressed in the following. A closely related work can be found in [71].

4.1. Hamiltonian Systems with Added Dissipation

In this section, we will see how dissipation enters a mechanical system through
exterior forces (or horizontal 1-forms). Let P be a Poisson manifold with a Poisson
structure {,}. Let H be a smooth function on P and Xy be the corresponding

Hamiltonian vector field as defined in an analogous way as in (3.3.7), or

Xulf] = {f, H}, VY feC>=(P). (4.1.1)

Recall that vector fields can be thought as derivations on the space of C* functions on
P, which will be denoted by F(P). The derivation on the function f corresponding to
a vector field X is usually written as Ly f or simply X[f], which is again an element

in F(P). Now let us consider a dynamical system which could be written in the form of

» = Xu(p) + XP(p), (4.1.2)

where p € P, and XD is a vector field on P. We have the following definition.
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DEFINITION 4.1.1

A vector field X? is called a dissipative field with respect to the Hamiltonian
system Xg in the region O C P, if
(i) XP[H}p) < 0, YpeO.
(ii) For z € O,

Condition (i) says that the directional derivative of H along XP is non-positive,
or the Hamiltonian (energy) decays along the direction of X?. The second condition
tells us that wherever the decay vanishes, the dissipative field must vanish as well.

Now we discuss a special type of dissipative fields which are induced by exterior
forces in (regular) lagrangian mechanics. We consider the case of P = TQ with the
Poisson structure (3.3.4). Recall that Lagrange-d’Alembert principle for the system

without constraints gives us the formula (2.1.14),

FL(X) + w = 0,

which could be written as

I;YX) — dHL + w = 0, (4.1.3a)
or
X — Np(dHL) + Op(w) = 0. (4.1.3b)
If we let
xP £ _I(w), (4.1.4)

then the virtual displacement corresponding to the dynamical motion is

X = Xy, + XP. (4.1.5)

We define the following notion.

59



DEFINITION 4.1.2

The exterior force w is called a dissipative force for a lagrangian system with

Lagrangian L in the subbundle O C TQ if

w(XHL)(vx) <0, Vu€0

and w = 0 on the zero section of O, namely,

w(z,0) = 0, for (z,0)€0.

Recall from Lemma 2.1.5, the Lagrangian vector field Xy, is a special vector field
on TQ, namely in local coordinates, Xy, (z,v) = (v, w) for w € T;Q. Since w is a
horizontal 1-form on T'Q, in local coordinates, we may write w(z,v) = (a, 0), where

a €T;Q. It follows that

w(Xpg, Nz,v) = {a, v). (4.1.6)

The function w(Xg,) on TQ is thus independent of the Lagrangian L. Consequently,

we may define a dissipative force for any lagrangian system as follows.

DEFINITION 4.1.3

The exterior force w is called a dissipative force for lagrangian systems in the
subbundle O C TQ if, in local coordinates, for w(z,v) = (a(z,v), 0), we have the
following properties.

(o2, v), v)
az,0)

IA

0, V(z,v)€O0,

0, V{(z,0)€0.

Namely, a must vanish on the zero-section of the bundle. For the case that a is in the

form of

a(z,v) = v v, (4.1.7)

where 7 is a negative definite matrix, then
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(e, ) = vy, (4.1.8)

which is exactly the Rayleigh’s dissipation function considered in the literature [23).

In the setting of lagrangian mechanics, the Lagrangian vector field Xy, has a
special character, namely, it is a special vector field, cf. Lemma 2.1.5. Also the virtual
displacement X must be a special vector field, cf. (4.1.5). Thus to define a dissipative

field for such lagrangian system, we need one additional assumption.

DEFINITION 4.1.4

A vector field XP is called a dissipative field for a lagrangian system Xz, in the
subbundle O c T@, if
() XP[HL)(v;) <0, Vv, €0.
(ii) For z € O,

XPlH)(v;) = 0, iff XP(v;) = 0.

(ili) XP is a vertical vector field.

It is then natural to state the following fact.

LEMMA 4.1.5
The vector field associated with a dissipative force, defined in (4.1.4),is a dissipative

field for any lagrangian system.

Proof
Since the map II; maps any horizontal l-form to a vertical vector field,
cf. Lemma 2.1.4, condition (iii) is automatic. The lagrangian system can be written

in the form of (4.1.5). It follows that
XPlHL} = dHL(XP) = —dH (1L (w)),
= —Qp (I (dHL), (W) = Qp(M(w), Xu,)

= w(XHL). (4'1’9)

It is then easily seen that the vector field X© defined in (4.1.4) is a dissipative field.

|
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For a simple mechanical system, the Lagrangian is
1
L(v) = 5 < vz, vz >z = V(a),
with the energy function
1

HL('U,;) = L Vg, Vg g + V(x)

N

Since dV is a horizontal 1-form, it annihilates any vertical vector field. Thus we only
need to check conditions (i), (ii) in Definition 4.1.4 with the kinetic energy, or riemannian
metric, instead of Hp. This is the definition adopted in [2], p. 234, cf. also [60], where
the dissipative vector field is defined through conditions (i), (iii) with replacing the total
energy by the kinetic energy. For a gyroscopic system, since the energy function is not

affected by including the gyroscopic term, the same remark applies.

4.2. LaSalle Invariance Principle and Maximal Invariant Set
In this section, we review the LaSalle Invariance Principle and discuss various ways

to characterize the maximal invariant set. We consider the following system,
t = X(z), z€Q, Xe %X(Q). (4.2.1)

The flow of X will be denoted by ®% which is assumed to be a diffeomorphism on Q.
®% (z9) denotes the point in @ of the flow of X at time ¢ which starts from z¢ at time

0. We only consider the case t > 0 here. We have the following notion.

DEFINITION 4.2.1

A set T in Q is called an invariant set for the system (4.2.1) if, for every y € Z,

di(y) € I, YVt>0. (4.2.2)

Let S be a subset in Q, Z is called the mazimal invariant set in S if Z is an invariant

set and if every invariant set in S is contained in Z.

Equivalently, by a straightforward argument, we may describe the maximal invariant set

in § as the set of all points y € S such that
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d%(y) € §, Vt>0. (4.2.3)

Accordingly, to find the maximal invariant set in S, we need to search for all the points

y € 5, such that the solution of
t = X(z),
z(0) = v,

stays in § forever. Since the solution z(t) stays in § for all ¢, we could restrict the

vector field X to the set S and consider the system,
¢ = X|g (2),

z(0)

(4.2.4)

I

y €85.

If the solution for the system (4.2.4) always lies in S, then y must be a point in the
maximal invariant set. On the other hand, every point in the maximal invariant set
must generate a solution of (4.2.4). Correspondingly, we have the following lemma to

characterize the maximal invariant set in S.

LEMMA 4.2.2
The maximal invariant set in S of (4.2.1) is the set of all points y € S such that

the system (4.2.4) generates a curve in S.

Now we consider the case that S is a level set of a smooth function f on &, i.e.
§={2€Q: fz) = ¢},
where c is a constant in R. From (4.2.3), it is easy to verify that the maximal invariant
set in § could be written as
I ={z€$ : f(@k(z)) = ¢, Vt2>0}. (4.2.5)

We assume that both the vector field X and the function f are analytic. We have the

Lie series formula, [26],
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o k
> f@)g

k=0

o k
1@+ Y LS
k=1 :

f(2%(2))
(4.2.6)

The maximal invariant set in S could be further written as, from (4.2.5), (4.2.6),

T ={zeS: f&)=c, L%f(z)=0, for k=1,2,... }. (4.2.7)
This formula provides us a convenient and systematic way to find the maximal invariant
set. We next recall LaSalle’s Theorem. [40]

THEOREM 4.2.3 (LaSalle Invariance Principle)

Let V be a smooth function on Q. Let I'. denote the region where V(z) < c.
Assume that T. is bounded and that within T'., we have

V(z) > 0, forz #0, and V(0) = 0,
(4.2.8)
LX V(:L‘) S_ 0.

Let R be the set of points z within T';, where Lx V(z) = 0, and let M denote the

maximal invariant set in R. Then every solution z(t) in I'; tends to M as t — co.
i

A function satisfying (4.2.8) will be called a Lyapunov function, cf. [28]. Here, the set

R could be written as

R ={zel,: LxV(z)=0}. (4.2.9)

For the analytic case, we could readily write the maximal invariant set M in R as,

from (4.2.7),

M= {zel.: LkV(z)=0, for k=1,2,3,..}. (4.2.10)

From Lemma 4.2.2, we could also consider the system

z = X|, (z),
e (=) (4.2.11)
z(0) = y €R.

to find the maximal invariant set. Every trajectory starting in I will approach this set

M as t goes to infinity.
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Now we consider a hamiltonian system with added dissipation (4.1.2). The
Hamiltonian is by construction a suitable Lyapunov function. From the Invariance

Principle, we have the following theorem.

THEOREM 4.2.4

Let T ={p: H(p) <c} C O. Assume that T, is bounded. Then, as t — oo,

every solution of (4.1.2) in T'. approaches the set,
M= {pel,: LfYH Lxp H(p) = 0, fork=0,1,2,... }. (4.2.12)

Proof

We only need to verify the conditions in (4.2.10) are equivalent to the conditions
in (4.2.12). In fact,

LxH = Lx,yxo H = Lx,H + LxopH = LxoH,

since H is a first integral along the vector field Xz . Thus we have the condition

beH(p) = 0.

But, by property (ii) in Definition 4.1.1, this implies that XP(p) = 0. It follows that

LYH(p) = LxyLx, H(p).

By induction, the set in (4.2.12) is equal to the set in (4.2.10).

In terms of the Poisson structure, we could write the set in (4.2.12) as
M = {p€T. : LxoH(p) = 0, {H, LxoH}(p) = 0,
(4.2.13)
{H, {H, LypH}}(p) = 0,..., etc.}.
For the lagrangian system with dissipative force, cf. (4.1.5), the energy function Hp
is a Lyapunov function. For gyroscopic systems with symmetry, we can get a similar

condition as in (4.2.12), just by replacing p by v, H by Hy. Moreover, from (4.1.9),

as proved in Lemma 4.1.5, the maximal invariant set could be further written as
M= {v el : L'}(HL w(Xp,) (vz) = 0, fork=0,1,2,... }. (4.2.14)
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Also note that for this case the set R, cf. (4.2.9) can be written as
R ={ve€l: : wXpg,)(vz) = 0}
From (4.1.6), in local coordinates, we may simplify the expression as
R = {(z,v)eT. : {(a(z,v),v) = 0}. (4.2.15)

Thus for a lagrangian system with dissipative force as defined in Definition 4.1.3, the
set R is greatly simplified. With these conditions in R, we may apply the techniques

discussed before directly to find the maximal invariant set.

4.3. Multibody Analog of Dual-spin Problem

In this section, we apply the techniques developed before to a problem which
is a multibody analog of the dual-spin problem. In the field of spacecraft attitude
control and stabilization, the dual-spin maneuver has an important place. In designing
a communication satellite or an interplanetary probe, engineers are often faced with the
requirement that the spacecraft be able to maintain a fixed orientation relative to some
inertial frame. The dual-spin technique is a simple, commonly used technique for meeting
this requirement. A dual-spin spacecraft consists of the spacecraft body and on-board
motor-driven symmetric rotors. In the presence of a suitable damping mechanism and
for sufficiently high rotor velocities, the attitude acquisition can be achieved. The final
state is a steady spin about a fixed axis. This single rigid body dual-spin problem has
been studied extensively before, e.g. [36] [34] [14] and the references therein. A rigorous
proof of asymptotic stability can be found in [36].

We consider a similar system as described in Section 3.5. But now we mount rotors
on each body and obtain an assembly as shown in Figure 4.3.1. Here the reference inertial
frame is placed at the center of mass of the assembly. This corresponds to reduction with
respect to the translational invariance of the system, as discussed in Section 3.5. Ignoring
the specific kinematic relationships between the rotors and the bodies, the unconstrained

configuration space @, is parametrized by the attitudes of these eight bodies,
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Figure 4.3.1. Two Rigid Bodies with Rotors

Qu = { (Bla Sla ‘523 53’ B27 Dy, D,, D3) }3
(4.3.1)

S0(3) x (50(3))° x 50(3) x (50(3))°.
To account for the body-rotor relations, we have the following constraints between the

attitudes,

S; = BlR(.’E;,H;), i= 1,2,3, (4.3.20.)

D; = B2R(yi,¢:), i=1,2,3. (4.3.2b)

where R(z;,0;) is the rotation about the z; axis by the angle 4;, e.g.

cos 85 sin 6, 0
R(z3,603) = —sin @3 cos 04 0 (4.3.3)

0 0 1
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With these constraints, the configuration space is then

Q = SO(3)x (8§1) x SO(3) x (§1)°.

Assume, for convenience, the centers of mass of rotors S; are at the center of mass
of carrier body Bj, and the centers of mass of rotors D; are at the center of mass of

the carrier body B;. It can be easily found from Figure 4.3.1 that we have the following

kinematic constraints,

Ts;, = T1, i=1,2,3, (4.3.4a)
rp, = T, i=1,2,3, (4.3.4b)
rs = 11 — Bidy 4+ Bads, (4.3.4¢)
(mp + ms)ry = —(mg + mp) rg, (4.3.4d)

with

ms = ms, + mg, + Mg,,

Mp = Mp, + Mp, + Mp,,
where my, ms,, ma, mp, are the masses of the corresponding bodies. Relation (4.3.4d)
realize the fact that the reference inertial frame is located at the center of mass of this
mechanical system. By using standard techniques, cf. (3.5.2), the total kinetic energy of

the system can be written as

1 . 1 - . 1 . 1 . .
T == m1]r1 |2 + §tT (.B1I]_Bir) + §mgl7‘2 I2+ -2-t7‘ (BgIzB%‘)

2
3./1 1 . .
+ 3 (3malia P + or(diassn)
i=1
2 /1 1.
+Y (3malial? + Fur(Diln,DD)).,

where I, I, Is,, Ip, are the coefficients of inertia of the corresponding bodies.
Assuming there is no potential energy, the Lagrangian on the tangent bundle to the

unconstrained configuration space @, can be written as, cf. (3.5.3),

- 1 l

) ) . ) 1 ) )
L =-2-t1‘ (Bl I B{) + 2tT(Bg I Bg) + 56 IBldl - Bgd2|2

1 (4.3.5)
2

t

(tr(.S",- Ig, S;r) + tT(Di Ip, D?)) )

3
=1
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where

a (m + ms)(my + mp)
my + ms + my + Mmp

is the reduced mass. Now we let

Bl = BIQh B'Z = B2 QZ’

which are kinematics of SO(3). Since S; = ByR(z;,6;), we have

Si= BiR(z:,6;) + B1R(z:i,8:;) = By(Qy + 8:)R(z:,6;).

and thus

Qs; = R(z;,6,)"Q + s,

where

We can then write

tr(S: Is, S7) = tr (@ + 8)R(:, 0) s, R(z,8:)7 (1 + 3:)7 ) .

We naturally assume that the rotors have material symmetry about the axis of rotation,

i.e.

R(z:,80;) Is, R(z:,6:)" = Is,,
and we get
tr(S’,- Is'. S;r) = tr ((Ql + §i)IS;(Ql + 3,’)T) =< Q]_ + S, IS‘(Q]. + S,‘) >E .

Similar derivations can be applied to the rotors D;. By substituting these formulae in

(4.3.5), the Lagrangian, L : TQ — R, can then be written as
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-Z(Bl’ 01'7 B2’ ¢i, Qly éia ‘Q2a éi’ t= 1’273)

1 1 . R
=3 < 1, 18 >k +35 < Q2, J2Qy >g +e <y, diBf B2d2Qy >k
1 . . . 1 . . .
+5< 0,10 > + < 0y, I°0 > +5 < 3,1P0 >p + <y, IP0 > .
(4.3.6a)
with
. . 3
=N +edidi+ ) Is,
i=1
. . 3
J, =1 + €dj do + ZID”
i=1
IS = diag((Ts,)s - (Is,)2  (Is,)s), (4.3.6)

1P = diag((Ip,)1 ,(Ip,)2 ,(Ipy)s),

0 =161, ® = |4 |.
63 #3

where (Is,); denotes the j-th diagonal element in the moment of inertia matrix Is, . The
physical meaning of J; is that it is the total moment of inertia of B; plus rotors referred
to the joint. The notation <,>pg refers to the Euclidean inner product. For simplicity,
we omit the subscript F in the following.

With this Lagrangian (4.3.6), we now apply a similar theorem as Theorem 2.2.1
to derive the dynamical equations for the multibody dual-spin problem. Let L be the

Lagrangian function expressed in terms of the variables

(Bl’ 67 B2) @7 Bl’ O,BZ’Q) € TQ

First, we need to find the differential of L in a form analogous to (2.2.6). It
can be found by the following procedure. Let (Uy,Us,Us,Us, Wy, Wa, W3, Wy) €
T(Bl,e,Bz,Q,Bl,é.Bz,é)TQ , which can be written as the form, cf. (2.2.3),

(By i1, u2, B2 i3, u4, By (101 + @), wa, By (3Q + 3), wa).

It generates a curve in T'Q given by
(Ble‘ﬁ‘, O + €ug, Byet2 ® +cuy, Ble”‘l(ﬁl + eq), O + ews,
Baef ™2 (0 + eb3), ® + ewy).
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Here we have

dL‘(U]_, U2, U3, U47 Wl, W?) W37 W4)

d . i
= L(Ble“”, O+ cuy, Boet¥?, & 4 cuy,
de |, .,
BleEﬁ‘(Ql +etdr), O + ew,, Byef %2, + ew3), <i>+ew4)
d - . .
= E L(Bleeul, @+6u2, Bgeeuz, @-*'6’(14,

Qy + ewy, O+ew2, Qg + ews, <i>+ew4)

= oL
< DBIL Byig > +< 9 u;)-{-— < DgzL Byig > +(a(§, U4>
oL

8%

The canonical form for dL(B;, O, By, &, By, 0, B, ) is, cf. (2.2.6),
(Bl(i’lﬁl +a1), a2, Ba(bsQz + @3), ay, Biby, by, Bybs, b4)-

Let Ny, N; be given by the formula

Dg, L = BNy, Dp,L = B,Ns,

we have
oL oL
ay = N, a; = 390 % = N3, a4 = 33
by = _Bf, by = .‘?j’_ - _ai = ?_IL
1 391’ 2 807 3 - 392’ 4 = a¢1

and we get the form of elements in (2.2.7),

L. . oL . BL Y
DiL = (B‘(ﬁﬁjQIJ“NI)’ 30’ (aa + Na), a<p>
o A (4.3.7)
oL 4L 0L 0L
D.I = o L Byl .
’ ( 100:" 96 P00, a¢>

Next we assume there exist torques on each joint. We interpret these torques as horizontal
1-forms on TQ. In general, without the kinematic constraint, we have the general
representation for a horizontal 1-form on the unconstrained tangent bundle, TQ,,
3 3
w = BT, dB; + ZS,‘TS,. dS; + B,T, dB, + ZD,-TD‘ dD;.
i=1 i=1
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Assume that the torque on the spherical joint is 77 in the body 2 frame. Ts,, Tp,
denote the torques exerted on the driven rotors and damping rotors respectively. We
assume there is no external torques. By the nature of the torques, (Newton’s third law),

we know that

3
BiTy = = STs, — B,T7
=1
3
BT, = -y D{Tp, + B,T7
=1
which implies
3
Ty = - R(z:,0:)Ts, — BT’
i=1

3
T, = =Y R(zi,¢:)Tp, + T’

t=1
where B = B B, is the relative shape. Let w act on a special tangent vector

w- (B $, O, By (o, &, Wy, Wy, Wi, Wy)

3
< T, Q> + Z < Ts'., R(:c,-,b’i)TQl + 8 >

=1

3
(4.3.8)
+ <Ty, Q3> + Z < Tsi, R(z;,H,-)TQZ + d; >

i=1

3 3
<=BT?, 0> + > < Ts, s>+ <T7, Q> + Y < Tp, di >

i=1 =1

Thus the horizontal 1-form corresponding to the torques can be written as

W(Bl, @, B2, Q-)Bl’é)yB%é)

3 3
= By(-BT7)dBy + > (Ts)id8:; + ByT7dBy + Y (Tp,)id

i=1 =1
Let
(Tsx)l (TD1)1
75 = { (Ts,)2 |, TP = [ (Tp,)2 |
(T53)3 (TD3)3

where (T's,); denotes the j-th component of the vector T's;,. Then
o = (Bl(_ﬁ"J), TS, ByTY, TD).
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We are ready to apply formula (2.2.7). The first component is worked out here.

The others can be found in a similar way. From

~ 0L d 0L oL . N —
_— ——— —_ —_ J -
B, a0, + B; PN B, (89191 + N1+ (=BT )) 0,
we get
d J
a?Ml = -—QlXMl-*-Nl—BT ,

where M; = -5‘99%. This can be rewritten in terms of Q;, etc. Explicitly, we get the
dynamical equations of the system in terms of variables in TQ.

J191 + IS@ + Sc‘ilB(ZgQg = -0 x (3191 + IS(:) ) - €d}_BQgéng — BTJ,

T2y +T1P8 +cdy BTdi Oy = -0, x (J2Qs + 18 ) — £ d, BT, d1Q, + T,
I5(Q, +6) = TS,
) (4.3.9)
I°(Q: + &) = TP,
By = B¢y,
Bg = BQQ2.

It is easy to see that the RHS of the dynamical equations (4.3.9) only depend on the
relative shape variable B. Thus we may do one immediate reduction, namely replacing

the kinematics of By and B, by the kinematics of B, or
B = BQ, - O,B. (4.3.10)

Thus the dimension of the dynamical system is dropped by 3. This corresponds to
the Poisson reduction with respect to the SO(3) action. The equilibrium points of the
reduced system are termed relative equilibria.

For the realization of the multibody dual-spin control structure, the following

feedback laws are used,

TS =15,
TP = - 3%, (4.3.11)
TJ = _7(92_BTQI)7
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where (3, and v are positive definite matrices. The first equation in (4.3.11) makes the
relative angular velocities between the driven rotors and B; be constants. The other
two equations signify damping torques on the damping rotors and the joint. With these
feedback laws and (4.3.10), we may write the dynamical equations (4.3.9) as

310 +edyBdyly = —Qy x (1194 + I50) — £dy BQydy Q5 + By(Qy — BTQy),

Jng + 6J2BTC2191 = —-Qg X (JgQg + ID@) - & J2BT91(2191

— (2 - B™%) + 59,

I°(2 + @) = -p2,
B = BQ, - 4B,
(4.3.12)
where © is a constant vector. Let

pr =31 Q + e di Bdy Qy, (4.3.13a)
p: =T1°0, (4.3.13b)
ps =32 -1°) @ + ¢ dy B” d; Oy, (4.3.13¢)
pe =1°(2% + &), (4.3.13d)

be the corresponding conjugate momenta, we can express the dynamical equations (4.3.9)

in terms of p; variables,

o= =01 X (p1+p2) - 6(2513652@2 - 7(§4 - BQy),

p2 = 0.

p3 = —Qa X (p3+pa) - ¢ d;f\lzBTfilQl ~ (2 - BTM) + 83, (4.3.14)
ps = B,

B = Bég—élB.

Here €y, 2, and <i> are the expressions of Q;, {2, and & in terms of p;, respectively.
These expressions can be found through (4.3.13). Later on equations (4.3.12) will be
referred to dynamics on the T'Q side, while equations (4.3.14) will be referred to dynamics
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on the T*Q side. By the symmetry of the system, we immediately have a first integral

of the system, namely, the magnitude of total angular momentum vector is conserved,

|p1+p2 + B(ps + p4)|* = constant. (4.3.15)

4.4. Asymptotic Stability

The multibody dual-spin problem can be put into the general framework of
gyroscopic systems with symmetry with exterior force. With a constant O, the
configuration space should include only B;, B;,and ®. Thus we may drop the quadratic
term in © in (4.3.6), and get the Lagrangian

.Z(Bl, B2, (bi, Ql» 927 @)

1 1 s 5
=5 <, Il > 45 < Qg Dol > 4e <O, di By B2d2 Q2 > (4.4.1)

1 . A . )
+§<<I>,ID¢>>+<92, I’ >+ <0y, 1°6 >

The last term in the Lagrangian is the so-called gyroscopic term, since it is linear in ;.
We are now ready to establish an asymptotic stability theorem. For this system, the
torque formula (4.3.11) give rise to a dissipative force in the sense of Definition 4.1.2. In
fact, from (4.3.8), we have

w(Xg, )(B1, Bz, ®,B1,B,,9)

= <-BT!, 01> + <77, Q%>+ < TP, &> (4.4.2)
=—<® 3> - <Q - B, 7(Q-BTQ)>.

It is readily checked that this exterior force satisfies the conditions in Definition 4.1.2,

and thus is a dissipative force. As discussed in Section 4.2, the energy function for this
system,

1 . .

Hy = 2 <@y, 1100 > 45 < D, 10 > +¢ < Qu, &1 BT BrdaQs >

2 . 2 (4.4.3)

+5< 3,109 > + < Q, 1% >,

is a suitable Lyapunov function. This is an analog of the core energy used in [34] to

justify the energy-sink method and used in [36] to prove asymptotic stability. In the
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absence of damping (i.e. ¥ = B = 0 ), the system is a hamiltonian system on the

TQ side with Hamiltonian function Hy,. This is clear from the construction.

We may now apply LaSalle Invariance Principle. Consider the dynamical equation

(4.3.12). First, we define the momentum variety in TQ/G as,

ME = {(Q1,9,8,B) e R x SOB): |p1+p2 + B(pa +p4)|* = 1},  (4.44)

which is parametrized by p;, and p, since p, is a constant along any trajectory. Here
D1, P3, pa should be thought as functions of the variables in the underlying space. From
(4.3.15), the dynamical motion leaves the momentum variety invariant. This will be the
domain of our analysis later on.

The set R discussed in Section 4.2 could be now written as

R = {(Q,9:,%B)eM;t : & = 0,0, -B70 =0} (4.4.5)

From (4.3.14), the set of equilibria in M}, can be written as

S = {(@0,9,8,8) € B x 50G): Ip+pal? =2,
p1=p—(BI:+ed; B dp)(I°) py,
p3=€dy BTd 3T p+ (I3 — 1P — ¢ dy BTy 3TV B, )(IP) 1 ps,
¢ =0, Q-B"Q =0,
— 0 x (I3 + 150 ) — e dy BQ,d,Q, = 0,

- Qg X JgQQ — S&QBTQIdIQl = 0}

This set is in one-to-one correspondence with the set of equilibria of the gyroscopic
system obtained by setting & = 0. See also Section 7.3. Now we characterize the

maximal invariant set in R. Since R can be written as the level set of two functions,
f1(Q1,2,8,B) = 9,
f2(,Q,8,B) = Q- B™Q,

we can find the maximal invariant set using (4.2.7) and these two functions. For k =1

in (4.2.7), we ask,
LXf1 = 0, LXf2 = 0, OIlR,
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which, in term, give us the conditions

From (4.3.12), we then get
-0 X (I, + 150 ) —ed B dy9y = 0,
—Qy x J5Qy —edy BT01d1Qy = 0.
We thus proved that the maximal invariant set is exactly the same as the set 3 , ,, of
equilibria for (4.3.12). From Theorem 4.2.3, we know that each trajectory will approach

the maximal invariant set in the limit. We can thus conclude the following theorem.

THEOREM 4.4.1

The mechanical system (4.3.12) asymptotically approaches one of the stable
equilibria in 3 , 5, , or the equilibria of the limiting hamiltonian system.

i

The limiting motions of the system, i.e. the relative equilibria, could be char-

acterized by the Principle of Symmetric Criticality with gyroscopic term. The system

behavior is affected by changing the gyroscopic field, which corresponds to altering the

driven rotor velocity here. These issues will be discussed in more detail later.

4.5. Partial Damping

For coupled hamiltonian systems with added dissipation, it is not necessary to put
damping mechanism at every interconnection. This is because, intuitively, the energy
will transmit from one body to the other bodies, and thus will be damped out at some
connections by the damping mechanism there. On the other hand, if we only put one
damping unit, the system may be driven into a nontrivial motion. The following two

examples discuss these cases clearly.

EXAMPLE 4.5.1

We consider the mechanical system described in Figure 4.5.1. This is a simple
system including four bodies lined up and connected with springs. In this example, we

put the dashpot (damping unit) 8 in the last spring.
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k1 k2 k3
L AAA LAA~ A~

—eil o) o o) — O

Figure 4.5.1. Four Bodies Connected by Springs I

The configuration space for this system is IR*, denoted by x = (21, 2,3, 24).
Assuming the reference lengths of the springs are a;, as, as respectively. We could

write the kinetic energy and potential energy as follows.

1 . . . .
T = 5 (ml:z:% + mgxg + m3z§ + m,;a:i),
1

1 1
Ekl(zz -z1—a1)? + '2-1‘72(23 -z —a2)® + -2-k3(9«‘4 — 73— a3)’.

(4.5.1)
v

The Lagrangian for this system is L = T — V. The exterior force is a viscous friction

coming from the dashpot. We may model it as a horizontal 1-form in the following way

w = (0, 0, —B(¢3 — &4), —B(Z4 — £3), 0, 0, 0, 0). (4.5.2)

We now apply Lagrange-d’Alembert Principle. The dynamical equations of this system
could be found as

mlfél = kl(.’rg - Tt — al),

Tn‘z(‘iz = - kl(:tg -2y - al) + k2($3 - Ty — ag),

(4.5.3)
maZs = —ko(z3 — 22 — a2) + ka(z4 — 23 —a3) — B(&3 — &4),
mats = —k3(Tq4 — T3 —a3) — B(Z4 — I3).

It is obvious from equation (4.5.3), also from the Lagrangian (4.5.1), that the system is
invariant under a translational motion. We may thus do one reduction with respect to

this symmetry. Let v = (v1,v2,v3,v4) = X, and

dy = z2-2;, dy = 23—23, d3 = I4-—Z3.

The reduced dynamics may be written as, from (4.5.3),
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dy =v; — vy,
dy =v3 — vy,
d3 = v — V3,

mit = k1(dy — a1),

maty = —ki(dy —a1) + ka(dy — a2),
maty = —ka(dy —az) + ka(ds —a3) — B(vs — vg),

3
-
S.
I

-_ k3(d3 -_ aa) - ﬂ(v,; — 1)3).

Relative equilibria are those states satisfying
di =a, d = a, d3 = a3,

P = Uy = V3 = V4 = counstant,

(4.5.4a)
(4.5.4b)
(4.5.4c)
(4.5.4d)
(4.5.4¢)
(4.5.4f)
(4.5.49)

(4.5.5)

namely, the four bodies move at the same speed without deformations in the springs.

It is easy to see that w in (4.5.2) is a dissipative force and the solutions approach the

maximal invariant set in

R = {(dl,dz,d;;,v) . ’U3-—’U4=0}.

The dynamical equations (4.5.4) restricted to R can be found as, with d3 = d3o a

constant,

di =v — vy,
dy =v3 — vy,

mity = ki(dy — a1),

mady = — ki(dy —ay) + ko(ds — asz),
mats = — ko(dz —a2) + ka(dz — a3),
m41')4 = - k3(d3 - a3).

We are looking for the initial conditions of (4.5.6) satisfying

d3(0) = d30, ’03(0) = ’04(0),
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Figure 4.5.2. Four Bodies Connected by Springs II

and leave the trajectories stay in R. We require that 93 = 74 and get the relation,

from (4.5.6d), (4.5.6e),
maky(dy — ag) = (m3z + my)ks(dso — a3).

Since all the elements except d; are constant, d; must be a constant as well. Thus from

(4.5.6b), we have v = v3. By similar arguments, we get the following conditions for the

states along the trajectories,
dy =dyp, dy = dy, dz = dsp,

M =V = V3 = V4 = V.
On the other hand, there is a conserved quantity of this system, i.e. the total linear

momentum,
mivy + mevy 4+ mavy + myvy = const.
It follows that v = vg, a constant speed, and
dy = a1, dxp = a, d3z = as.

Consequently, only the initial conditions satisfying (4.5.5) will leave the restricted
dynamics stay in R. The maximal invariant set in R is thus the same as the set of

relative equilibria. We conclude the asymptotic stability of this system.

EXAMPLE 4.5.2

We consider a mechanical system similar to the one discussed in Example 4.5.1.
The only difference is that we put the dashpot (damping unit) @ in the middle spring,
as depicted in Figure 4.5.2.
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The Lagrangian for this system is the same as before, while the exterior force is different

now, cf.(4.5.2),
w = (0, —ﬂ(i:g —:f:3), —ﬂ(i‘3 -—:i:g), O, 0, 0, 0, O). (4.5.7)

Following similar arguments and notations, we get the reduced dynamical equations for

this system, (from (4.5.1),(4.5.7)),

dy = vy — v1, (4.5.8a)
dy =v3 — v, (4.5.8b)
ds =vq — v, (4.5.8¢)
myby = ky(dy — ay), (4.5.84)
maty = —ki(dy —ay) + kao(dy — az) — B(va — va), (4.5.8¢)
maby = —ky(dy —ay) + k3(ds —a3) — B(vz — ), (4.5.8f)
myvy = — ka(ds — a3). (4.5.8¢9)

The conditions for relative equilibria are the same as before, i.e. (4.5.5). We are looking

for the maximal invariant set in

R = {(dhd2’d3av) : ’Ug—-‘v3=0},

The dynamics restricted to R could be written as, with do = dyo a constant here,

cf.(4.5.6),

d = v, — v, (4.5.9a)

dy =vy — v, (4.5.9b)

mit = ki(dy — ay), (4.5.9¢)

maty = — ki(dy —a1) + ka(dy — ap), (4.5.94)

maty = — ko(dy —a2) + ka(ds — a3), (4.5.9¢)

maty = — ka(ds — a3), (4.5.91)

with initial conditions satisfying v2(0) = wv3(0). From the relation 9, = 93 in R and

(4.5.9d), (4.5.9¢), we get the equation
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m3k1(d1 - 0,1) + m2k3(d3 - a3) = (m2 + m3)k2(d20 - a2). (4510)

By taking time derivatives on both side of (4.5.10), we obtain

m3k1d.1+mgk3d.3 = 0.

With (4.5.9a), (4.5.9b), we find another relation,

—makiv + mokavs + (maky — moks)vy = 0.

Taking time derivative on each term once more and using (4.5.9¢),(4.5.9d), (4.5.9f), we

have
(-t - Croba i), - ) - 228y - )
™ Mo my (4.5.11)
_ (m3k1 - m2k3)k2

™y (dgo - (12).

Now equations (4.5.10), (4.5.11) form two equations for two variables dy, d3. If these
two equations are nonsingular, we could solve for dy, d3 which are then constants along
the solution. It could be found that the condition for singularity is

maks

(m3 - m4) + (m2 - ml) = 0. (4.5.12)
m

With similar arguments as the discussion at the end of Example 4.5.1, we conclude
that generically the trajectories of the system (4.5.8) approach the set of relative
equilibria asymptotically. For the system satisfying (4.5.12) the limiting dynamics
exhibits nontrivial behavior.

The above two examples illustrate the point that partial damping may either ensure
asymptotic stability or else drive the system into a resonance state. Now we consider
the mechanical system discussed in Sections 4.3, 4.4 again. Instead of putting damping
on both the ball-in-socket joint and damping rotors, we only install damping mechanism
on the damping rotors. Namely, the torque law is now, cf. (4.3.11),

TP = - 3%,
(4.5.13)
T =0.
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The force generated by these torques is still a dissipative force, with the zero set,

cf. (4.4.5),

R = {(Q,2,8,B)eM: : & =0} (4.5.14)

The dynamics restricted to R could be written as, from (4.3.12),

J1Q1 + € Jchfgﬂ2 = - X (Jlﬂl -+ 15@) —-£ (ilBﬂz(ngg, (4.5.15&)

JgQg + EJzBTélﬂl = —Qz X JzQz - EégBTﬂltilﬂl, (4515b)
I°(Q, + ) = 0, (4.5.15¢)
B = B, - OB, (4.5.15d)

with initial conditions satisfying $(0) = 0. To have the solutions in R, it is required

that

d = 0.

It follows that, from (4.5.15c), that Q; = Qj9, a constant vector. Thus (4.5.15) could

be further written as

Jlﬂl = —Ql X (Jlﬂl + IS@) - £ JlBﬂgocngQo, (4516(1)
E(iz.BT(ilQl = —ng X Jzon - G(igBTQldAlQ]_, (4516b)
B = Bﬂgo - QlB, (45166)

We are looking for initial conditions such that the solution of (4.5.16) will stay in R
forever. From (4.5.16a), (4.5.16b), we immediately have the relation
(igBT(ilJl_l (Ql X (Jlﬂl + ISO) + £ 81B920J2Q20> —_ ngTQI(ilQl
. (4.5.17)
=z Qa0 X J2 Q2.

For simplicity, we let

[

156,

ne>

Q X (Jlﬂl + l) +¢£ &13020&2920.
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By taking derivatives on each element in (4.5.17), we get
d, BT ((s‘z1 = BQ20)(d1 37 P = (di Q1) + £ dy I71dy B(Q20 — BT, )00d2 020

- JIJTIJI:TP(JIQI + l) - (i]_Ji—IQ]_P + J;:ijlﬂl + fll(ilJi-lP> = (.
(4.5.18)

Equations (4.5.17), (4.5.18) form a set of six equations with six unknowns. If we could
solve the equations for Q;, B, Theorem 4.4.1 could be established as well for the partial

damping case.

4.6. Decoupling by Driven Torque Feedback

For coupled mechanical systems, such as the one shown in Figure 4.3.1, decoupling
of motions is always an interesting issue. Here we consider the two bodies system and
propose a scheme which makes the motion of one body be decoupled from the motion of
the other body. The configuration is similar to the one discussed in Section 4.3, except
that the joint damping mechanism and damping rotors are taken out, and the speed of

driven rotors on body 1 is varied. From (4.3.9), the dynamical equations for this system

can be written as,

I + 190 + €diBdy(y = -0y x (31 + 190) - dy B dyQy,  (4.6.1a)

I +edoBTdi QY = -0 x 390y — £dy B (4410, (4.6.1b)
I5(Q; + 6) = TS, (4.6.1¢)

B = By, (4.6.1d)

B, = B)Q,. (4.6.1¢)

The control here is the driven torques T°. It can be checked that with the control law,

TS5 = —( xI5(Q1 + 0) + £d1 BQ2d;Q; + € d1 Bd, Q) (4.6.2)

equation (4.6.1a) can be found to be
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(J1 - IS)Ql = - X (J1 - IS)Ql, (4.63)

which is the Euler’s equation for a rigid body. Thus the motion of Body 1 exhibits the
single rigid body motion with modified inertia tensor. From (4.6.2) and (4.6.1b), we
could further write the motion of Body 2 as
Jng = - Qz X Jng — SJQBTQﬂilQl
i X (4.6.4)
+ 6ngTd1(J1 - IS)—l (Ql X (Jl - IS)Ql).
By substituting the expression of € in (4.6.2), we get a quadratic feedback law for the
driven torques,
TS = - (Ql X IS(Q1 + O) + ScilBQngQz + 6(2130?2.];1 [—Qg X J292

(4.6.5)
—edyB™0d1Qy + €da BTdy (3 - I5) 7 (@4 x (31 - IS)QI)D.

With this velocity-dependent feedback (4.6.5), we could thus decouple the motion of
Body 1 from the motion of Body 2, though the motion of Body 2 (4.6.4) is highly
affected by the motion of Body 1.
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CHAPTER V

Stability Analysis

In this chapter, we discuss the notion of relative stability and consider several
schemes for determining stability. They are energy-Casimir method, Lagrange-multiplier
method, and energy-momentum method. In particular, the block-diagonalization tech-
niques associated to the energy-momentum method in determining stability for simple
mechanical systems with symmetry are successfully extended to gyroscopic systems with
symmetry. These techniques will be applied to specific problems in the following chap-

ters.

5.1. Relative Stability

Let B, P be differentiable manifolds, and G be a Lie group. Consider a principal
G -bundle, (P,G, B), namely, G acts differentiably on P freely and properly, B == P/G
is the quotient space of P with the canonical projection = : P — B being differentiable.
Moreover, P is locally trivial, that is, every point u € B has a neighborhood U such that
there is a mapping from 7~}(U) to U x G, z = (n(2), #(z)) which is a diffeomorphism
and ¢(g-z) = g-¢(z),forall g € G. See Figure 5.1.1 for an illustration of the geometric
structure of such an object. For more details, see, e.g. {49].

A vector field X on P is said to be projectable if for each f € F(B), there exists
a f € F(B) such that

X[for] = foum,
where the LHS denotes the Lie derivative, cf, e.g. [46], [30] Now, given a projectable
vector field X on P, the corresponding projected vector field X on B is defined in the
following way. Let f be a smooth function on B, the Lie derivative of X on f is defined
through
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Figure 5.1.1. Principal G-bundle

X(F1 2 F or X[flor = X[for]. (5.1.1)

Tt is easy to verify that the vector field X, defined in (3.3.2) is projectable with the

projected vector field Xj defined in (3.3.3) in the above sense. Now, we have the

following notion.

DEFINITION 5.1.1

For the principal G-bundle, (P, G, B),apoint z € P is called a relative equilibrium
of a projectable vector field X € X(P) if 7(2) is an equilibrium of the associated
projected vector field X € %(B). Moreover, a relative equilibrium z € P is relatively

stable modulo G if the equilibrium 7(z) is Lyapunov stable with respect to the projected
vector field X .

REMARK 5.1.2

In {43], the smooth manifold structure of the quotient space P/G is not explicitly
invoked in defining the notion of stationary motion and relative stability modulo G .
However, for the group action being free and proper, or P/G is a manifold, which is
the case considered in this dissertation, Definition 8.13, p. 242 in [43] are equivalent to
Definition 5.1.1.

For a gyroscopic system with symmetry, the definition of relative equilibrium
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vz € T'Q in Definition 3.4.2 matches with the Definition 5.1.1 by noting that the principal
G-bundle is now (T'Q,G,TQ/G). Accordingly, the relative equilibrium v, is relatively
stable modulo G in TQ if 7(v;) is a stable equilibrium with respect to the projected
Hamiltonian vector field X #r, - On the other hand, in the symplectic reduction process,
we have the bundle structure (J~1(x), G, (TQ),). The relative equilibrium defined in
Definition 3.4.1 can be regarded as a relative equilibrium with respect to this principal
G -bundle. Correspondingly, we may define the relative stability modulo G, in J~1(u)
with respect to the reduced dynamics X - Since the space (7'Q), is diffeomorphic to
a symplectic leaf in TQ /G, relative stability modulo G in TQ implies relative stability
modulo G, in J~1(x). The converse is illustrated by the following theorem from [43],
Theorem 8.17, p. 244, see also [37].

THEOREM 5.1.3

Let v be a relative equilibrium, cf. Definition 3.4.1 or 3.4.2. Definiteness of the
Hessian D*HY at 7,(v%) € (TQ), implies the relative stability modulo G in TQ of v2
if there exists a neighborhood W of 7#(vZ) € TQ/G such that the rank of the Poisson

structure {-,-};, defined in (3.3.5), is constant in W.

Those points v, in TQ satisfying the constant-rank condition stated in the above
theorem will be referred to as generic points. The following example demonstrates that
the sufficient condition in Theorem 5.1.3 is essential. This example is from [43]. A

detailed discussion can be also found in [37].

EXAMPLE 5.1.4

Consider a symplectic manifold (@), w), where
Q = ]R’4 = {(Qh g2, P1, P'.’) }7

(5.1.2)
w = da A dpr + dg2 A dpa.
Let
G = Aff+(R)
= { (a,b) € R? } with the group structure (5.1.3)

(a,b)-(c,d) = (a+¢c, b+e”d).
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It can be shown that G defined in (5.1.3) is a Lie group. We define the action of G on
Q as
G x@Q—Qq,
((a,8), (q1,92,P1,P2)) = (a+q1, b+e®q, p1, e % p2).
It is easy to check that this is a symplectic action on . This action is also free and
proper. It follows that @Q/G is a manifold (= IRQ). The symplectic structure w in
(5.1.2) defines a Poisson bracket on F(Q) which, in turn, induces a Poisson structure

on @/G. Let a Hamiltonian function H be defined as
H(qlaq2,p17p2) = P2 e‘h’

which is a G-invariant function. It can be checked that (0,¢,0,0) € @ is a relative
equilibrium corresponding to the vector field Xz . Moreover, this relative equilibrium is
relatively stable modulo G, in J~!(p), since the quotient space J~!(u)/G, degenerates
to a point. However, it has been shown in {37] that this relative equilibrium is not
relatively stable modulo G in . Note also that that the induced Poisson structure
doesn’t have a constant rank at (0,%,0,0) and hence the condition in Theorem 5.1.3
does not hold.
i
In the remaining sections of this Chapter, several useful methods will be discussed
for determining relative stability in the appropriate sense. For simplicity, we will drop
the underlying space in the definition of relative stability, e.g. we say merely relative

stability modulo G, . The underlying space is clear from the construction.

5.2. Energy-Casimir Method
We first recall some facts from the Lyapunov’s stability analysis. Consider the

dynamical system
z = f(z), (5.2.1)

where f : W — R™ is a C! map on an open set W in R™. We have the following

lemma.
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LEMMA 5.2.1 (See [32], p. 193)
Let Z € W be an equilibrium of the system (5.2.1), f(Z) =0. Let V: U — R be

a continuous function defined on U, a neighborhood of Z in W, differentiableon U -z,
such that

V(z) =0,

V(z) >0, VzelU -z,

V(z) <0, YzeU-%,

then Z is Lyapunov stable. Here V(z) = DV(z)- f(z) is the directional derivative of
the function V along the trajectory.

Now we consider a general Poisson system with a Hamiltonian H,

i = {z, H}(z) = A(z) VH(2). (5.2.2)

A function f on a Poisson manifold (P, {-,-}p) is said to be a Casimir function if

{f,9}p =0 VyeC=(P).

A Casimir function is automatically a conserved quantity for any Hamiltonian vector

field Xy on P. This can be seen ffom the following identity,

LXHf = {f7 H}P*

If {-,-}p is induced from a symplectic structure and P is connected, then the only
Casimir functions are the constant functions.

For the system (5.2.2), assume the null space of A is not empty and spanned by
VCi,i=1,---,m, where C; are Casimir functions. Then z. is an equilibrium of (5.2.2)
if and only if

m
VH(z.) = Y A VCi(ze), (5.2.3)
i=1
or
m
V(H - A c,-) (ze) = 0.
=1
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Since C; are Casimirs, we may write (5.2.2) as
m

¢ = {z, H=)_ X Ci}(z).
iz=1

It follows that H — 3°7%, A; C; is a conserved quantity along the trajectories of (5.2.2).
Notice that if C is a Casimir, so is any smooth functional of C'. We have the following

theorem.

THEOREM 5.2.2 (Energy-Casimir)

If there exists a Casimir function C such that

V(H + C)(ze) =0, (5.2.4a)

(second variation) V?(H +C)(z.) >0, (or <0) 5.2.4b)

then z. is a Lyapunov stable equilibrium of (5.2.2).
Proof
Define

V(z) = (H +C)(z) - (H + C)(ze).

By assumption V2(H + C)(z.) is positive definite, so we know that z. is a strict local

minimum. Thus there exists a neighborhood U of z, such that
V(z.) =0,

V(z) >0, VzeU-{z.}
Since H + C is a conserved quantity along trajectories of the given system, we have also

V(a:) =0, VzeU-{z.}

We therefore conclude that z. is Lyapunov stable by Lemma 5.2.1. A similar argument

can be applied for the case that VZ(H + C)(z.) is negative definite.

REMARK 5.2.3

In Theorem 5.2.2, the Casimir function C could be any combination of smooth

functions of the Casimir functions C; in (5.2.3). Therefore we have a family of candidate
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Lyapunov functions. Among them, we may vary some parameters to get a suitable

Lyapunov function.

This theorem provides us with a systematic method for determining stability of equilibria
in noncanonical hamiltonian systems, cf. [33]. In particular, it helps in determining the

relative stability modulo G corresponding to the projected Hamiltonian vector field

Xg, -

5.3. Lagrange-Multiplier Method

Now we describe an alternative approach to obtain a stability theorem. This is
a scheme suggested by Maddocks in [44]. The stability of equilibrium of the Poisson
system (5.2.2) is once again the subject of study. Here we assume that the null space of

A is one-dimensional. Consider the constrained variational problem

min H(z),
(5.3.1)
subject to  C(z) = b,

where b is a constant representing prescribed data and C is a particular Casimir function.

The Lagrangian corresponding to this optimization problem can be written as

L(z,)) = H(z)- AC(z), (5.3.2)

with A € R. The first-order necessary conditions for (5.3.1) then coincide with (5.2.3)

for m = 1. We now recall the following lemma.

LEMMA 5.3.1 (See e.g. Bertsekas [g], p. 68)
Let P be a symmetric matrix and @ a positive semidefinite symmetric matrix,

both of dimension n X n. Assume that, for z € R",

<z, Pr> > 0, VYz#0,suchthat <z, @z > = 0,

then there exists a (large, positive) scalar a such that
P+ a@ >0,
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namely, P + a@Q is positive definite.

We can now state the stability criterion as follows.

THEOREM 5.3.2

Suppose that z, and A\, € R are such that

VieL(ze,Ae) = 0, (5.3.3a)

and, moreover,

< h, ViL(ze,A) > > 0, V h#0suchthat < VC(z,), h> = 0. 5.3.3b)

Then z. is a Lyapunov stable equilibrium of (5.2.2).

Proof
Let
P = ViL(z, ),
Q = VC(z.) VC(z,)T,
so that by hypothesis P and @ satisfy the conditions of the previous lemma. Thus we

can find a € R such that P + a@ is a positive definite matrix. Now, with the notation

b= C(z.), we define the augmented Lagrangian by,

Lo(z,)) = H(z) — AC(z) + -;-a(C(:c)—-b)Q,

H(z) + C(z).

Then we have,
Vila(zesAe) =VH(ze) + AVC(ze) + 2 (C(ze) —b) VC(ze) = 0,
V2La(Ze,Xe) =V2H(ze) + (Ae + @(C(ze) = 8)) VEC(ze) + @ VC(2)VC (ze)”
=P 4+ a@ >0.

Since the function C is also a Casimir function, Theorem 5.2.2 can be applied to conclude

that z. is a Lyapunov stable equilibrium of system (5.2.2).
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REMARK 5.3.3

(a) Conditions (5.3.3) form a set of sufficient conditions for z. to be a constrained
local minimizer of (5.3.1).

(b) In an application of Theorem 5.2.2, we would search for a suitable Casimir C
to fulfill the condition (5.2.4), cf. Remark 5.2.3. However, in the application of
Theorem 5.3.2 we can fix a particular Casimir C and a scalar A satisfying (5.3.3a),
and then attempt to verify (5.3.3b). The analysis in Chapter 6 will illustrate the
differences between the two schemes.

(c) With appropriate hypotheses, Theorem 5.3.2 can be generalized to cases in
which there are n independent Casimirs, and the underlying space is infinite

dimensional.

To apply the techniques of the current and previous sections to verify the relative
stability modulo G of a relative equilibrium, we need to first find Casimir functions
associated with the induced Poisson bracket {-,-}; defined in (3.3.5). For a hamiltonian
G-space, there is a natural way to construct a family of Casimir functions from the
momentum mapping J as follows (see, e.g. [62]).

Suppose ¢ : G* — R is an Ad*-invariant function on the dual of the Lie algebra,

namely, for p € G*,

#(Ady ) = H(p), Vged. (5.3.4)

We defire a function

Co = ¢oJ : TQ—-R. (5.3.5)
It is easy to see that this is a G-invariant function. In fact,
Co(®T(v5)) = dpo0JodT(vz) = poAdyoJ(vz) = ¢oJ(va).

Thus Cy4 induces a function Cy on TQ/G through

d¢ of = C¢. (536)
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Now we prove that C, is a Casimir function corresponding to the induced Poisson

bracket {,-};. For arbitrary f € F(TQ/G), we have

{f, Cotiof = {fo7, Cpo7}r = { f, Cs }1,

where f is a G-invariant function. Recall that J is an integral of any vector field induced

from a G-invariant function, cf. Theorem 3.2.6. Thus
{f, Co}r = d(¢oJ)-X; = 0.

It follows that Cy is a Casimir function with respect to the induced Poisson bracket.

The dual-paring picture in Figure 5.3.1 illustrates the structures.

TQ
g*
G /
R

Figure 5.3.1. Dual-Pairing

TQ/G

For a gyroscopic system with symmetry, the momentum mapping can be found
in (3.2.11). We could then construct Casimir functions through the above process. In
particular, for the special case that G = SO(3), the Ad* action is, for B € SO(3),
i € so(3)*,

Adyi = BaBT = Bp.

The function defined by

#(a) = |pl (5.3.7)
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where |- | denotes the euclidean norm, is an Ad*-invariant function, since
9(Adp) = ¢(Bp) = | Bu| = |pl.

Consequently, from (5.3.5), the norm of the momentum mapping gives rise to a Casimir
function for this special case. This applies to most mechanical systems with the symmetry

of rotation group.

5.4. Energy Momentum Method

The previous two sections are concerned with relative stability modulo G of a
relative equilibrium in T'Q corresponding to the Poisson-reduced dynamics. In this
section, the relative stability modulo G, will be examined based on the momentum
mapping. Here we extend the energy-momentum method to the general framework of
gyroscopic systems with symmetry. At generic points (in TQ/G), the two notions of
relative stability are equivalent, cf. Theorem 5.1.3.

Let (P,w) be a symplectic manifold on which the Lie group G acts symplectically
and let J : P — G* be an Ad*-equivariant momentum mapping for this action (see
Section 3.1 for definitions). Assume we could perform symplectic reduction on P in
the sense of Marsden and Weinstein [48]. The reduced phase space is denoted by
P, = JY(u)/G,. Let H : P — R be invariant under the action of G. It induces

a Hamiltonian function H* on P, satisfying

4 _ .
Htomw, = Hoiy,,

where 7, : J~!(u) — P, is the canonical projection and i, : J7}(p) — P is the
inclusion map. We are interested in the stability property of a relative equilibrium
under the reduced dynamics X« on the reduced space P,, or the relative stability
modulo G, in J™!(u). By construction, H* is a first integral of the reduced dynamics.
Thus if H* has a strict local minimum at 7,(z.) where z. is a relative equilibrium, then
H* serves as a Lyapunov function. Lemma 5.2.1 can be invoked to conclude stability.

Since, for z € J~}(u) C P,
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H¥(mu(2)) = H(iu(2)) = HIJ—I(#)(’Z)7

the condition for 7,(z.) being a strict local minimum of H* is equivalent to the condition
for z. being a strict local minimum of H| J=1() modulo the tangent directions of the
group orbit, G, - z. This in turn corresponds to checking that the relative equilibrium

2z solves the constrained minimization problem,
min H(z)
subject to  J(2) = p. = J(z.).
This problem could be further formulated as checking z, to be a strict local minimum of
H —(J,£) in all directions on J~*(u.) except along the tangent directions to the group
orbit generated by G, . These heuristic discussions could be formally spelled out in the

following, which gives rise to the energy-momentum method, cf. [63], [62], [56], [61].
Define

He(z) = H(z)-(J(z), ). (5.4.1)
From the relative equilibrium theorem, cf. Theorem 3.4.3, each relative equilibrium of
the system is a critical point of H¢, for some £ € G, namely,
DH(z.) 6z = 0, Véz € T, P. (5.4.2)
From previous discussions, the definiteness of the second variation of H¢ on a subspace
S of T,, P satisfying
S = T J 7 pe) [ Te(Gu - 2e), (5.4.3)

implies the stability of the relative equilibrium z, in the reduced dynamics. One way to

find such a space S is to find a complement of T, (G, - z.) in T, J~!(u.) such that

T:. 07 pe) = S & Te(Gu 2).

Since T,,J~'(ue) = Ker DJ(z.), which is the kernel of the operator DJ(z.), we could

summarize the energy momentum method for relative stability as follows.

ALGORITHM 5.4.1 (Energy-Momentum Method)
0. Pick £€G.
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1. Solve the problem

DH(z)-6z = 0, VézeT.P,

for a relative equilibrium =z..
2. Compute pe = J(z.) and determine the space Ker DJ(z).
3. Find § C Ker DJ(z.) such that

Kel' .DJ(Ze) = S @ Tz‘(G“'ZC)-

4. Check the second variation of H; on'S. Definiteness of the second variation implies

stability.

For visualizing the geometric pictures, see Figure 5.4.1.

T.(G - 2)

Figure 5.4.1. Energy-Momentum Method

Now we consider gyroscopic systems with symmetry introduced in Chapter 3. The
underlying space is P = TQ with the symplectic structure ;. In this setting, the

momentum mapping is given by, cf. (3.2.11),
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J(vz)(€) = < vz +Y(z), €o(z) >0, (5.4.4)
and the energy-momentum functional is, cf. (3.4.3),
He(vg) = Ke(vg) + Ve(z), (5.4.5)
where, cf. (3.4.5),

Kf(vi) = % < v-’L‘_EQ(‘T)a vx_SQ(x) >>:!:a

Ve(e) = V(e)= < Y(2), bole) >= —5 < Eal@a),Eale) > o
We define the space
N: £ {mg(a) : n€G ), (5.47)
which is a subspace of T.Q, and thus
N & Uzeq Nz, (5.4.8)

is a subbundle of TQ. We could then decompose T.Q into N and N where NV} is
the orthogonal complement of A, with respect to the inner product associated with the

riemannian metric. Every element v € T.Q can be thus written uniquely as
v o= 1NQ (:8) + 9,

for n € G, 5 € N} . With this decomposition, the function K, could be further written
as, from (5.4.6),

Kz, v) = lino(z) = &@)|* + FlolP. (5.4.9)

Note that at relative equilibrium (z., £g(z.)), we have v, = £g(z.), and ¥ = 0. Thus
the second term in K¢ is nonnegative and vanishes at relative equilibrium with a positive

semi-definite second variation. Define
- 1
He(z.n) = 31l m(2) - €@ P + Ve(a) (5.4.10)

We can determine the relative stability from this modified function on the space of { X §G.
Taking variations in the space Q X § corresponds to taking variations in the subbundle

N C TQ. We define the embedding
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Z:QxG — TQ,
(z, m) ~ (2, 1q(2))-
Then He = Hgo Z. Similarly, define the pre-momentum mapping
J(z, n) = JoZ(z, n) = J(z, nolz)). (5.4.11)

We may define an action on the space @ X G as

U :Gx(@xG) — @x%x¢G

(5.4.12)
(g’ (:1:, 77)) — (g-:z:, Adg’?),
where Ad is the adjoint action defined in (3.1.10). It can be shown that
3ToZ = ZoV,. (5.4.13)

Also we have

LEMMA 5.4.2

The pre-momentum mapping J : QxG — G* is Ad"-equivariant.

Proof
We have

L

o

L=
@

]

JoZol, = JodloZ

= Adj10J0Z = Adj..0J.

From this Lemma, it can be shown that the level set J ~1(u) is invariant under the
action of the isotropy subgroup G,. Furthermore, let H:Q xG — R be defined as
H = HoZ. From (5.4.13), the function H is invariant under the group action ¥. The

functional H¢ can be now written as

By the invariance properties, the restriction of H ¢ on J (),

Eflj—l(“) = I-{lj—l(#) - (ﬂv ‘f)
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is invariant under the group action of G,. As a consequence, the geometric picture is
similar to Figure 5.4.1. An algorithm similar to Algorithm 5.4.1 can then be applied
to check if (z.,£) is a local minimizer of H; restricted to J~1(p). Before doing that,
we introduce a few notations. The riemannian metric restricted to the subspace N
provides an z-dependent bilinear form on the Lie algebra G. This, in turn, induces a

locked inertia tensor associated to z € Q,
Ilock(x) I g*v
defined through

(€, Lock(2)1) & < £o(2), Mo(z) >a (5.4.14)

for £, n € G. From the symmetry property of the riemannian metric, we have

(& Lioek(@)m) = (Liock(2)€, M),

namely, I;,.x(z) is symmetric. Also, we assume that, at z, the locked inertia tensor has

an inverse,

Ilock(x)_l : GC — G.

On the other hand, the gyroscopic field also induces for each z € () an element
Iy(z) in G defined by,

(Iy(z), 1) & < Y(2), ng(z) > V7€EQ. (5.4.15)

We refer to Iy(z) as the (z-dependent) gyro-momentum. The function H; may now

be expressed as

It

S (1= € Toek(=)(n = )
F V(@) = 26 Tea@8) — (Iy(2), ©), (5.4.16)

(n =&, Lipek(z)(n—8)) + Vi(z)

ﬁf(zv 77)

[T

with the pre-momentum mapping, from (5.4.4), (5.4.11),for n € G,
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(J(z, ), ¢) = (J(z, ne(x)), ()
< no(), Co(z) > + <Y (2), (o(z) >=
(Liock(z)n, €) + (Iv(z), {),

il

or we may write

J(z, 1) = Loer(z)n + Iy(z). (5.4.17)

For p € G*, the associated isotropy subalgebra G, is defined in (3.1.13). With the
inner product induced on G by the locked inertia tensor at z., we define the orthogonal

complement of G,  to be

g;t é {Ce g . <C’ Ilock(xe)n> = 0, V'f] € gue } (5418)

Following the notations used in [61], we define the maps

A:Gg -G, A:G -G,

A1) & adjpe, AM) = Toek(ze) " A(n), (5.4.19)

respectively. As proved in [61], we have the following lemma.

LEMMA 5.4.3
Provided that (];t is finite dimensional or A is elliptic with respect to the inner
product induced by Ij,ck(z.), we have
(i) A maps G onto G- .

(ii) A maps G onto G2 C G*, where

gﬁﬁ = {peg : (u n =0, Vneg,, }s

is the annihilator of G, .

With these notations, we are now ready to apply Algorithm 5.4.1. We proceed as

follows.
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Step 0. Fix £eg.

Step 1. It is straightforward to derive

DH(z, 1) (éz, &)

= DVe@)se + (67, Tosk(@)(n = O) + 31~ € (Dlioon(2)6) (1~ )

The relative equilibrium is given by the conditions

DVg(iEe) = 0’ Tle = é.’

which match with the conditions we obtained in Algorithm 3.4.4.

Step 2.

For the relative equilibrium (z, £), we have
pe = J(2e, &) = Lioer(ze)€ + Iy(ze). (5.4.20)

Now we find the space Ker DJ(z., ¢). From (5.4.17),

d - ,
—|  J(z+ebz, n+ebn)
de |, g 5.4.21)

= (DIzack(:r)&z:)n + Iioek(z)on + Dly(z)éz.

DJ(z, n)(8z, &n)

Here z + €6z denotes the integral curve corresponding to the tangent vector éz at z.
For (éz, 6n) to be in Ker DJ(z., £), we must have, from (5.4.21),
bn = "‘Ilock(ze)—l ((DIlock(ze)6$)€ + DIY(xe)&E),

(5.4.22)
= Tjoek(ze)™? ident{:(we)éx.
where the map identY: G x TQ — G* is defined by, for (z,6z) € TQ,
ident Y¢(z)éz 2 - ((DIlock(:v)é:c)é + DIy($)5$>. (5.4.23)

This map specializes to the map ident; defined in [61] when Y = 0, i.e., for simple
mechanical systems with symmetry. The properties of this map play an important role

in our subsequent development. We need the following lemma.

LEMMA 5.4.4

For z € Q and (, v, n € G, we have the following identities,
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(¢, (DIlock(z)"Q(x))V) = ([¢, 1], Lioek(z)v) + ([v 7], Lioek(2)C), (5.4.24)

(¢, DIy(z)ne(e)) = (Iy(z), [(, nl)- (5.4.25)

Proof

The proof of (5.4.24) could be found in {61]. Here we only verify (5.4.25). By
definition (5.4.15),

d
(¢, DIy(z)nq(e)) = ——| (Iv(expen-z), ()
€le=0
d
= E: < Y(expfﬂ : I)a CQ(eXP€77 ’ 1:) Pexp en-z
e=0

= LTIQ <Y, CQ > (‘T)v

< LnQY(z)’ ((z)>: + €Y (2), LnoCQ(m) >z,

by using Lemma 3.1.2. Also we have the identity L, (o = [{, n]o. With (3.1.19) in
Lemma 3.1.1, it follows that

(€, Dly(zhng(x)) = < Y(z), [C. nlalz) >
= (Iy(=), €, ).

This is the desired identity.

|
We now evaluate the map ident Y¢(z.) restricted to the space N, .
LEMMA 5.4.5
For n € G, at relative equilibrium (z., £),
ident Y¢(z.) no(ze) = adjpe + Liock(ze)(n, €] (5.4.26)

Proof
From the definition (5.4.23), for arbitrary v € G,

(ident Ye(z)no(ze), v) = —(v, (Dliock(ze)g(ze))§) — (DIy(ze)n(ze), v),

From Lemma 5.4.4, this could be further written as
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-([Va TI], Ilock(me)g) - ([Ea 7]]3 Ilock(xe)l’>_ (IY(ze)3 [V7 77])
= (Ilock(xe)g'i'IY(xe), [77y V]) + (Ilock(xe)[ﬁ, 77]7 V)a

= <ad;;,uea V> + (Ilock(ze)[fv T’]’ V)'
where the formula for p. in (5.4.20) has been used. We thus established (5.4.26).

The discussions in Step 2. could be summarized by writing

Ker DJ(z.,£) = { (¢, n) € Tiz..0(@ xG) : ,
(5.4.27)
N = Loek(ze)™! ident¥(z.) 6z }.

Step 3.

As shown in (5.4.27), the component of G in Ker DJ(z.,€) is determined from the

variation éz in Ty Q. We thus only need to decompose the kernel space with respect to

T: (G, - z). Since

NEe 2 Ty (G, -2e) = {ng(ze) €Te@ : 1€Gy, }, (5.4.28)

we may find the orthogonal complement of it with respect to the riemannian metric as,

V= {&eT.Q :<bz, ng(ze) >z, = 0, VNEG,, } (5.4.29)

Consequently, we may write the space S as

S = {(6z, ) eVXG : n = Le(ze)™" ident¥(z,) 6z }. (5.4.30)

and we get Ker Df(xe,f) =S & T(th)(G“e - (ze,&)), where, with respect to the
action ¥ defined in (5.4.12),

T(xeyf)(Gue '(l'e,f)) = {(CQ(xe)v ad(f) : CE gu¢ }7
can be shown to be a subspace of Ker DJ(z.,£).

Step 4.
Now we check the definiteness of the second variation of H ¢ on the space S. The
block diagonalization techniques prove to be useful in this context. We introduce a

decomposition of the space V as follows. Let
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Veic = {(q(ze) : C€Gp }, (5.4.31)
Vine = {& €V : ((, ident%(z.)fx) = 0, V(e Gt }. (5.4.32)
By definitions (5.4.7), (5.4.28) and (5.4.31), we have
N = Nf< @ Vgye.
But the condition for

V = Vric © VinT, (5.4.33)

will be discussed further in the following (cf. Lemma 5.4.7). The relationship between

these spaces is depicted in Figure 5.4.2.

VINT

Figure 5.4.2. Decomposition of T,Q

The second variation of H ¢ could be found as

D*He(ze,€) - (621, m) - (622, 72)
= {m, Liock(ze)m) + D*Ve(z,) - 21 - bz,

= (ident¥%(2.)6z1, Liock(ze) ™" ident¥(z.)6z2) + D*Vi(z.) - 621 - 672,

for (6z1, m), (6z2, M) € Ker Df(ze,f). A bilinear form on Ty, Q X T, Q is defined as,
B¢(bz1, 6z2) = (ident¥(z.)éz;, Ilock(:ce)_lidentyé(ze)éa:z) (5.4.34)

[ 02

4 D2V£(xe) . 5231 . 5.’E2.
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Note that

Dzﬂ.é(""m&)'(émh 771)'(637% 772) = Bg(&tl, 6:272).

We have the following key proposition.

PROPOSITION 5.4.6

For ng(z.) € VriG, and 6z € VinT,
Be(ng(ze), &z) = 0.

Proof
We first find the second variation of V. By the property that V is G-invariant

and Lemma 5.4.4, we have

DV(z) - 7a(=)
= DV(z) ma(z) — 3 {6 (Dliock(2)- 10(2))8) ~ (DIy() - na(z), £),

= - ([61 77]7 Ilock(z)é + IY($)>- (54.35)

It is then easy to see that, cf. (5.4.23),

DZVE(z) ) 7]Q($) b = —<[€9 77]9 (DIlock(x) . 637)6 + DIY(x) . 6111>

= (¢, 7], ident¥(z)éz). (5.4.36)

Next we evaluate the bilinear form on Vgrre X Vinr. Combining (5.4.34), (5.4.36) and

using Lemma 5.4.5, we get,

Be(ne(ze), 6z)
=(ident¥%(z.) no(ze), Lioek(ze)™" ident¥(z.) 6z) + ([, 7], ident(z.) éz),
=(adzpte + Liock(ze)[M, €], Lioe(ze) ™" ident¥e(z.) 6z) + ([§, 7], ident¥%(z.) &),
=(adype, Tioer(ze) ™! ident¥(z.) éz),

=(A(n), ident%(z.) &z), (5.4.37)
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where A is defined in (5.4.19). From Lemma 5.4.3, A(7n) € g‘i . For éz € VynT, by the
definition of VN, cf. (5.4.32), the desired property follows.
|
With this proposition, the second variation of H ¢ on S at relative equilibrium is
diagonalized into two blocks. Checking the definiteness of D*H ¢ on S is thus equivalent
to checking the definiteness of B¢ on the spaces of Vrig X Vrrc and VinT X VINT
independently, under the assumption that (5.4.33) holds. These techniques simplify the
computations quite significantly, as will be seen in later chapters. In particular, the form

of B¢ on Vrre X Vrre could be worked out explicitly. From (5.4.37),

Be(no(ze), no(ze))
= (A(n), ident¥e(z.) no(ze)),
= (A(n), ad; e + Lioek(ze)m, €1,

= (ad:,ﬂe, Ilocl‘:(me)_1 ad;ﬁ%) + (ad:;llev ad,€).

(5.4.38)

This is the Arnold block analogous to the one in simple mechanical systems with
symmetry [62]. The gyro-momentum is buried in p. and can affect definiteness of this
block. Definiteness of this block ensures the decomposition (5.4.33) of the space V', which

is proved in the following lemma.

LEMMA 5.4.7

Positive definiteness of B¢ on Vgig X Vric implies that V = Vric & VinT .

Proof
We only consider here the finite dimensional case. For the infinite dimensional

case, the proof is analogous to the one in [61]. Letting (¢(z.) € Vric N VinT, We have

(€ G ,and

(v, ident ¥¢(z.)(o(z.)) = 0, VvE gi. (5.4.39)

We choose, in (5.4.39),

v = A(() Egi,

which is ensured by Lemma 5.4.3. By comparing with (5.4.38), we get
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B¢ (Co(ze), Colze)) = 0.

Since, by assumption, B is positive definite, this implies { = 0. Namely,

Vric N Vinrt = {0}

On the other hand, dim Vg;g + dimVi;ny7 = dim V. Thus the decomposition (5.4.33)
holds.

With this Lemma, we don’t need to verify (5.4.33) explicitly. It is guaranteed by checking
the definiteness of the Arnold block. We summarize the discussion in this step in the

following theorem.

THEOREM 5.4.8

If the bilinear form B is positive definite on both Vrie X Vric and VinT X VINT,

then the relative equilibrium (z., £g(z.)) € TQ is relatively stable modulo G, .

Now we have completed the process of Algorithm 5.4.1 of determining the relative
stability for the gyroscopic systems with symmetry. The block diagonalization of the
second variation of A ¢ is achieved on the constrained subspace S. A few explanatory

remarks follow. First, we note a necessary condition for relative equilibrium.

PROPOSITION 5.4.9

At relative equilibrium (z., £),

ad; p. = 0. (5.4.40)

Proof

This result holds in the general setting of hamiltonian systems with symmetry, see
Proposition 1.2 of [61] for a related proof. Here we give a proof applicable to the setting
of gyroscopic systems with symmetry.

From the discussion in Step 1, at relative equilibrium, DVe = 0. We evaluate it

along the directions in A, with the formula (5.4.35). Forall n € G,
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0 = DVE(%)'UQ(%) _<[€7 77], Ilock(xc)f + IY(xe)),
= _(adﬁn’ #e) = —'<777 adzﬂ:%
from (5.4.20), (3.1.11). Thus, at relative equilibrium, we have adgpe = 0.

Next we consider the amended potential introduced for simple mechanical systems

with symmetry. From (5.4.17), we may construct a mapping from @ X G* to @ X G as

(z, p) — (a:, Ipoer(z) ™t (p - Iy(m))) . (5.4.41)

With this transformation, we may write the function A ¢ on the space Q X G* as, from

(5.4.16),
He(z, p) = Vu(2) = (g, &),
where
V(o) = V(@) + 3{n-Tr(@), Tok(@)? (- Tr(z))y  (54.42)

is called the amended potential. It can be shown that, at relative equilibrium (z.,§), we

have

DV,(z¢)6x = DVi(z,) bz,
(5.4.43)
D2Vu($e) N 51‘1 '6.’132 = B&(é&?l, 6272).

Thus the stability conditions in Theorem 5.4.8 are equivalent to the conditions for the
relative equilibrium to be a constrained strict local minimizer of the function V). This
conclusion is analogous to the Lagrange-Dirichlet theorem in spirit [6]. We phrase it as

a theorem.

THEOREM 5.4.10

For gyroscopic systems with symmetry, the components of relative equilibria in
the configuration space are the critical points of the function V). If the configuration
component z. of a relative equilibrium is a constrained strict local minimizer of the

function V), (i.e. by taking out the neutral directions tangent to G, - z¢), then the

relative equilibrium is relatively stable modulo G, .
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REMARK 5.4.11

In most practical problems, the augmented potential V% is easier to compute than
the amended potential V,. From Theorem 5.4.8 and (5.4.34), it is clear that positive-
definiteness of the second variation of V; on V is sufficient for stability. Following
arguments similar to the discussion regarding V),, we could get an analogous statement

as in Theorem 5.4.10 with V,, replaced by the augmented potential V..

In the following, we consider two special cases. First, it is easy to see that for the

case of Q@ = G, cf. Figure 5.4.2,

Vint = {0}

Consequently, we only need to consider the Arnold block for stability. Secondly, for the
case of G = SO(3), we have

ade 7 = £x1, (5.4.44a)
adi i = L X E. (5.4.44b)

where €, 7 € s0(3), and & € s0*(3). Thus, Proposition 5.4.9 implies

pe X £ = 0, or p. = A€, (5.4.45)

where A € R is a scalar. It follows that G, is the subspace spanned by the vector £,

which, in turn, implies that

Recall that in Lemma 3.4.5, V; is invariant along the group orbit, §; - z.. From
Remark 5.4.11, we conclude that for this case, the function V¢ defined in (3.4.8)
is sufficient for determining stability. We summarize the discussion in the following

corollary.

COROLLARY 5.4.12

We consider a gyroscopic system with symmetry (Q, X,Y,V,G).
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(1) For the case that @ = G, positive definiteness of By at relative equilibrium, defined

in (5.4.34), on Vg X Vric implies relative stability modulo G,,.

(ii) For the case that G = SO(3), a strict local minimizer of the function V, defined

in (3.4.8) on the space /G induced by the augmented potential V; corresponds

to stable relative equilibrium.

Now we implement the energy-momentum method in more detail for the case of

G = §0(3). Through the isomorphism between IR® and skew symmetric matrices

defined in (2.2.1), we could define the locked inertia dyadic I7 . (z) as

(€, Toek(2)D) = € I,e(z)m,

(5.4.46)

where we have used the trace pairing, cf. (2.2.4) and the matrices J Lioek(2), I, ()

are related by the formula in (2.2.2e). Also, we may define
Iy(z) = I3(2),
where I(z) € R®. Namely,

(Iy(z), 1) = I¥(z)-n.

With these two objects, we have the following new representations,

jO(m’ é) = ‘l)ock(x)c + Ig’(z)’

1
Vé = V(x) - §£'I?ock(m)§ - I';/(-T)'E,
identxéo(a:)ém = —(DI}, . (z)6z)§ — DIy (z)éz,

The bilinear form defined in (5.4.34) is now

B:(6z1, bz2) = ident’?(ze)éa:l -If’ock(z:e)'lidenty'éo(:ze)d:cg
+ D*We(z.) - bz - bz2.
The Arnold block in (5.4.38) can be then written as, cf. (5.4.44),
(ad3ite Liook(ve) ™" adifie) + (adifie, adsé)
= (pe X 1) - Ioe(@e) ™ (e X m) + (ne X 1)~ (1% £)

= ¥ € xn) (Tale)™ = 31) €x0)
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It is thus clear that for the Arnold block, we need to check the definiteness of the matrix
I (ze)™t — —}\—1 along all directions except £. Note that here A is not an eigenvalue
of the locked inertia dyadic in contrast with the case of simple mechanical systems with
symmetry. The gyroscopic field affects A through the gyro-momentum term, cf. (5.4.45).

Since the examples we shall consider later are all with G = SO(3), the above

formulae will be used frequently.
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CHAPTER VI

Rigid Body in a Central Gravitational Field

This chapter concerns the dynamics of a rigid body of finite extent moving under
the influence of a central gravitational field. The principal motivation behind this work
is to reveal the hamiltonian structure of the n-body problem for masses of finite extent
and to understand the approximation inherent to modeling the system as the rotion
of point masses. To this end, explicit account is taken of effects arising because of the
finite extent of the moving body. In the spirit of Arnold and Smale, exact models of
spin-orbit coupling are formulated, with particular attention given to the underlying
Lie group framework. Hamiltonian structures associated with such models are carefully
constructed and shown to be non-canonical. Special motions, namely relative equilibria,
are investigated in detail and the notion of a non-great circle relative equilibrium is
introduced. Non-great circle motions cannot arise in the point mass model. In our
analysis, a variational characterization of relative equilibria is found to be very useful.

The reduced hamiltonian formulation in this Chapter suggests a systematic ap-
proach to approximation of the underlying dynamics based on series expansion of the
reduced Hamiltonian. We will also establish nonlinear stability results for certain fami-
lies of relative equilibria. Here the energy-Casimir method and the Lagrange multiplier

methods are proved to be useful. This Chapter follows closely the discussions in [72].

6.1. Hamiltonian Setting

In the study of the Newtonian (gravitational) many-body problem, it is customary
to treat the bodies as point masses. See (Sternberg [68], Smale [64], and Abraham and
Marsden [2]). However the proper accounting of stable planetary spins for instance,
would seem to require the consideration of bodies of finite extent which will be assumed

rigid (possibly nonhomogeneous) as a first approximation. The works of Duboshin
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[15], Ermenko [18], Elipe and Cid [16], Elipe and Ferrer [17], are concerned with the
existence of special solutions (e.g. central configurations) in the Newtonian many-rigid-
body problem. However, in these papers, the natural geometric and group-theoretic
underpinnings of the problem are not exploited to the full extent possible. Here we work
out the noncanonical hamiltonian structure of the problem of motion of a rigid body in

a central gravitational field.

A configuration of the system is depicted in Figure 6.1.1. Let C denote a fixed
gravitating body of mass M (with spherical symmetry) that influences the motion of a
rigid body B of mass m. The inertial frame of reference (of the observer) is attached
to C and a body frame is fixed on the rigid body B at its center of mass. A typical
material particle q in the rigid body is represented by the inertial vector ¢ = Bg + r,
where B is an element of SO(3) (independent of the particle) and r is the vector
from C to the center of mass of body B. At any instant, the configuration of the rigid
body B is determined uniquely from the pair (B,r) € SE(3), the special Euclidean

group of rigid motions in R3 .

Figure 6.1.1. Rigid Body in a Central Gravitational Field
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The kinetic energy of the rigid body relative to the observer at C is,

1 . _
T =5 [14Fdn@
B8
where dm (-) denotes the mass measure of the body. Here onwards, | -| denotes the

Euclidean norm in IR3. It is an elementary fact that the above expression simplifies to

the formula, cf. (3.5.2),

T=12<QI0> +%’-|f~|2 (6.1.1)

N

where 0 is the body angular velocity vector of the rigid body , m is the total mass
of the body and 1 is the moment of inertia tensor of B in the body frame. We note

that K = 2T defines a riemannian metric on SE(3) , the configuration space.

The gravitational potential energy of the body B is given by,

__[eM, [ GMin@
V= .Llﬂd(® ﬂ|r+3qr (6.1.2)

where G is the universal gravitational constant. The Lagrangian for the problem is

then a function

L:T (SE@B3)) — R,
(6.1.3)
(B,r,Q,#) = T - V.

The inertial observer at C has the freedom to change his frame of reference to

a new orientation. This corresponds to an SO(3) action on the configuration space

C = SE(3):

®: SOB) xC — C
(6.1.4)
(R,(B,r)) — (RB,Rr).
It is easily checked that this action leaves invariant the kinetic energy T ( riemannian
metricon C ) and the potential V.
The Hamiltonian H = T +V is given by
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GM

_ -1 |p | _/ - ‘
H = <IL, I7'O > + o 5 —]r n Bﬁ]dm (Q), (6.1.5)

N =

where II = I is the body angular momentum of the rigid body B, and p = mr

is the spatial linear momentum of the body. One has also the formula,

7 = BIQ + rxmr

= BIl + r X p,
for the spatial angular momentum of the rigid body.

It can be verified that = = = (II,B,r,p) is an Ad*-equivariant momentum
mapping for the lifted action ®7° on T*SE(3) and hence is a conserved quantity for
the dynamics Xy . This is further equivalent to Euler’s balance law. To see this, let

Fresultant denote the force resultant on the rigid body. Then,

_ GM(r + BQq) _
Fresultant = — 4/2; 17' + B§ |3 dm(‘l)y

and by linear momentum balance,

P = Fresultant. (_6.1.6)

On the other hand, the torque resultant,

dm(q)

'Il"esultant =

__/ (r + Bg) x(r + BqQ) GM
B |r + Bqf?
= 0.

Thus angular momentum (or Euler’s) balance law yields:

i = 0. (6.1.7)

Collecting together the balance laws one can write the spatial form of the dynamics as
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. GM (r + Bq -
p = - ( — ;l)dm(q)s
5 |r+ Bq| (6.1.8)
B =w B,
a = p/m
where w is the spatial angular velocity of B defined by B = &B, and we have the

relation w = BQ. Equivalently, in mixed body and space variables (II,B,r,p) we

get,
. _ GM(BTr x q)
I=1 x 171 dm(§
* 5 |r+ Bgp? @),
) GM (r + Bq) _
= - d
P s I+ BaiP m(q),
B = BI-I,
= p/m. (6.1.9)

We remark that, with the Lagrangian (6.1.3), we could apply the techniques developed

in Section 2.2 and obtain the same dynamical equations, cf. Section 4.3.

6.2. Symmetry

Since H is §O(3)-invariant, one can induce a Hamiltonian H on the quotient
T*(SE(3))/SO(3) and express the dynamics Xg in terms of appropriate reduced
variables, see Section 3.3. In the present context it is easy to determine the reduced

variables. Note that
3T . SO(3)x T*SE(3)— T*SE(3) (6.2.1)
(R, (I, B,r,p)) — (II, RB, Rr, Rp)
is the cotangent lift on 7S E(3) corresponding to the action (6.1.4). A representative

for each equivalence class in T*SE(3)/S0(3) is given by

(1, 1, BTr, BTp).
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Thus the reduced variables (or convected variables) are:

II, the body angular momentum,
A = BTr, the convected radius vector from C, and

i = BTp, the convected linear momentum.

In terms of these convected variables, the dynamics X takes the form

GM (Axq)

I =InxI'I+ = =2dm(q),
s 1A+ qf @
A= AxITUD + % (6.2.2)
) _ GM (A +q), ,_
=pux IV - / —dm(q),
B = p s Tr+ar (@)
and the Hamiltonian H is given by,
= 1 -1 Rk / GM _
H = 2(H,I o) + ¥ T3 ldm(q). (6.2.3)

Equations (6.2.2) with Hamiltonian (6.2.3) are the Poisson reduced equations on
T-SE(3)/50(3) =~ so*(3) x R?® x R®. The reduced Poisson bracket can be found in
the following way. The resulting bracket captures the geometry of the central force field
problem.

Let {-,-) denote the pairing between T*50(3) and TSO(3) as defined in (2.2.5).
P = T*SE(3) carries a canonical symplectic structure and hence a Poisson structure
{->-}p given by

of 05 0§ Of

9g 3f )+ ______ —_—

{fag}P(B’anrvp) = (DBfa ‘éﬁ) - (Dgg,EB-ﬁ-

where %; . g—% denotes the natural pairing, i.e. the Euclidean inner product on R3.

The group G = SO(3) acts on SE(3) by left multiplication, cf. (6.1.4). With
reduced variables, II, A, p, we will compute the reduced Poisson structure on
T*SE(3)/50(3) ~ so*(3) x R® x R3. Since s0*(3) ~ R?, the question is equivalent to
finding a Poisson structure on R3 x R® x R®.

Let f,g € C(R> x R® x R?®), and define f,§ € C®(T*SE(3)) as
F(B, BIL,r,p) = f(IL, BTr, BTp).
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By the definition of reduced Poisson structure, we have

{f,9}p/c(T, A, 1) = {f, 3} p(B, BIL, BX, Bu).

(The right hand side is the canonical bracket in T*SE(3).) Then, by the canonical

bracket on T*SE(3),
- 03 _of . of o0 03 of
’ H7A, =D 7'—""‘2“"'D y T— —_— e — e,
:93pi6(I A w) = (Dsf. 5oe) = {Dsd e + 50 3, ™ or B

Instead of computing each element in the above formula individually, we compute the
differential of f. An argument similar to the one in constructing representations for
second tangent bundle in Section 2.2 will be applied to find global representations
of elements in TT*SE(3), T*T*SE(3). Let W = (Boy,B(51Il + o3),v3,v4) €
T(B,Bﬁ,r,p)T*SE(Zi). It generates the curve

(BeEﬁl,Beef’l(ﬁ +e€d2), 7 +€v3,p+ “’4> CT"SE@)

Thus the differential is given by,
df(B7 Bﬁ, T‘,p) -W

= Edz e=0f<Be””,Be“"(f[+ef)2),r+ €v3,p+ em)
= -diie— =0f (H + evz,eef’}.BT(r + evg),e“"fBT(p-i- 61)4))
= %-vg-{-g—{- ﬁ;‘rBTr+BTv3)+-g—i-('&fBTp+BTv4)
= (“’\X%"‘“‘ -g;) -v1+%-vg+B%-v3+B%{--v4.
Let the elements in T(*B,Efl,r,p)T*SE(:;) be denoted as, cf. (2.2.6),
(B(Bfl +a),Bi>,c,d).
We have
a = -—/\x—g-i:— x%ﬁ, b = g—IfI,
c =B, 4= Bg-i.
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Thus we obtain

—

- 9 iy
DBf=B<f o 2y af>>, Dpaf = BYL,

oI ax) X3
oF _ 4of  0f _ o
ar g op au

The reduced bracket can then be derived as

{f,9}pra(lL, A, 1)

_ 0 e _nn Of _of af df _dg
—<B<6H —-(Ax a/\) (X‘a—;)> BB_II>+B(9,\' M

9y - ~9yg ez af af
Bl Ya_npx% s 99  pof
< (an (Ax gy —x g, ) B > +B8/\ Baw

— T .,
=§tT(HT6f 8g> ztr<ﬁra_g 0_f>+£7_f_.?_2__5‘29_.§i

9l oI |~ 2 9 O | * 9Xx dp  0OX op
af 99 o9\ _ 99 af of
+8II (Axa)\+ 8;1) Ei <>‘X5X+”X}9_p)’

Og,. 0f 99 99 Of

-k (an o T oy 9u " 9x B
Lo dg ag> dg of of
T o (“aﬁ *os) Tam (“a_ﬁ“xﬁ)

A . o)

= Ao I .
T\ 9x  op PR 3
Em

In terms of the notation introduced before, the matrix form for the Poisson tensor A is

oA g
Ao Ij. (6.2.4)
I

REMARK 6.2.1

The reduced Poisson structure derived here is very closely related to the one

derived by Krishnaprasad and Marsden for the dynamics of a rigid body with a flexible

attachment [38]. The key link is the geometry. In [38] the unreduced phase space is

infinite dimensional and is given by
Po=T"S03)xT"C
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where C = {f : [0,L] — IR® | f is smooth} is the configuration space for the string

attachment. In the present paper the unreduced phase space is

P=T"SE(3)=T"S0(3) x T*"R>.

In both settings, the reduction is by SO(3). In [38], the Poisson bracket takes the form

_ of L/af 8 g Of
{f,9}p.jc=-1I- (aII )+/0 (ﬁ’a—a-a)ds

99 " g ( of of
ds— | == .{ax == hl
“ (3 *’“‘w) o= [ g (x g enx )
where the convected variables A, y are R® valued functions on [0,1]. As we let the
flexible attachment become vanishingly small (L — 0) with infinitely large density,

{*s'}p../c “collapses” to {-,-}p/G.
i

In terms of the Poisson tensor A on so*(3) x R? x R3, (6.2.4), equations (6.2.2)
take the compact form,

i\ (1 % &\ (Ve -
A =X o T VA | = AVA. (6.2.5)
B 7

The Poisson structure is rank-degenerate, and there are nontrivial Casimir functions of
II, A, u. Casimir functions are kinematic conserved quantities for equations of the form

(6.2.5). In fact, any function Cy, of the form, cf. (5.3.7),

Co = ¢(IL + X x ul’)

is a Casimir function. Here ¢ : R — R is any smooth scalar function. Moreover,

these are the only Casimir functions defined on the open set of generic points of A .

From the general properties of Casimir functions, we know that Cy is an integral
invariant for any Hamiltonian vector field and in particular for Xg. It is further
important to note that replacing H by a suitable approximation (such as derived from
series expansions of the Newtonian potential term) does not affect the integral invariance

of C,. This is of some use in developing an analytic perturbation theory.
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6.3. Relative Equilibrium

With the symmetry discussed in the previous section, we put our system into the

framework of simple mechanical systems with symmetry. The elements are,

Q = SE(3),
K (U1, Us), W1, W) = tr(U IWE) +m < Uy, W, >g,
6.3.1)
GM (
V(B, r) = - | ———dm(g),
(8. 7) = - [ g
G = 50(3),

where (U, Uz), (W1, W2) € Tig, »SE(3), and I is the coefficient of inertia of the

rigid body. The superscript T in W; denotes matrix transpose.

With this framework, we now discuss the concept of relative equilibrium defined
in Definition 3.4.2. For the dynamics X of a rigid body in a central gravitational field,
the relative equilibria are determined by setting the time derivatives in equation (6.2.2)
(or (6.2.5)) to zero. On the other hand, in general position, i.e. Il # 0, VC, spans the
kernel of A. Thus we have the energy-Casimir characterization of relative equilibria in

general position: (II, A, ) is a relative equilibrium iff
VH = VC,,  for suitable ¢, (EC)

iff ( Lagrange multiplier characterization )

I O+ AXp
VaV ] = a [ ux(@+Axp) |. (LM)
L (T 4+ A X ) X A

where a # 0 is a constant and

7 () = - /B GMq dm().

On the other hand, the algorithm in the principle of symmetric criticality provides
us an alternate characterization of relative equilibria, cf. Algorithm 3.4.4, or 3.4.7. In
what follows we apply this principle to find the relative equilibria for the problem of

rigid body motion in a central force field.

For £ ¢ so(3), the corresponding infinitesimal generator of the group action on @

can be found as
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¢Em(B, r) = (€B, ér). (6.3.2)

We then have

K(ém(B, 7), éu(B, 1)) = < BTE, 1B ¢ > +m | € x 7], (6.3.3)
and
1 1
Ve(B, 1) = - 5 < BT¢, 1 BT¢ > --2-m1§ x r|?
GM
- ——— dm(q). .3.
J, 5 @ (6:3.4)

We then get the first-order conditions for (B, r) to be a critical point:
(r + Bq) GM
|7 + Bq [

(r x B§) GM
| + Bq |3

(i) méEx(Exr) + dm(q) = 0

(6.3.5)

(i)  €x (BLIBTE) — / im(3) = 0.
B

Next, we calculate p, in Step 2. The map K’ can be found as follows. For (118, w;),
(41 B,u2) € T(B,r)SE(3),
K® (i B, wy) (1B, ug)

= tr(i B IBT4T) + m < w,, up >g

< U, BIBTw1 > + < U, mwy >E .
Thus
K*(,B, wy) = ((BIBTwi) B, mws) € (g, SE(3).

We then have

p. = K*(éna)) = ((BIBTE) B, mér) (6.3.6)
= (B(IBTe), mér). B

Note that in the formula for p, , the two components correspond to the angular mo-
mentum and linear momentum respectively. If welet p denote the body representation

of the linear momentum, we get
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(iid)  p = mBTér.

Substituting @ = BT ¢, A = BTr, conditions (¢), (it), (ii7) read

() m@x(@x) + [ %dm(q) =0,
(i) QxIQ - /B %dm(q) _ (6.3.7)

and

(15) p = m(QxA).

These conditions are identical to the conditions obtained from the reduced dynamics

(6.2.2) and the definition of relative equilibrium.

Now, if we take the cross product with A on both sides of (i'), we get

mA. X (e X (e X Ag)) +

(Here again the subscripts e refer to equilibrium.) Comparing it with (i¢'), we obtain

mA X (e X(e X X)) + e x I, = 0.

By standard identities in vector analysis, we get

Q. x (I - mx A1), = 0. (6.3.8)

We conclude that €, must be an eigenvector of the matrix I — mA.AZ.

Let k. denote the corresponding eigenvalue. Then one can obtain the relative
equilibrium characterization (LM) from (6.3.7) by setting,

1

= TTETLT (6.3.9)

Conversely, using the identity,
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A X (@ xA)x Q) =-2x(Ax (2 xA)

and a few further algebraic manipulations, one can derive (6.3.7) from the relative
equilibrium characterization (LM). We leave the verification to the reader. Thus the
two characterizations are equivalent. Of course, for simple mechanical systems with
symmetry, the equivalence of the characterization. (EC) or (LM) and the variational

characterization based on the augmented potential V; holds in general.

Note that we fix £ while searching for critical points of V¢. Thus Q@ = BT¢ is of

fixed norm as B varies over SO(3).

Let

QP = |¢P = 8
Define V5 (2, A) to be V¢(B, 7) expressed in the convected variables Q, A. Then,
- 1
Vs (@3 = - 5 <0, 10> --’;lm x A2

+ V(N (6.3.10)

Clearly, the critical points of Vg on the sphere | |> = B satisfy the unconstrained

variational principle,

- 1 o
—1Q]) = 6.3.11
iV + —19") =0, ( )

where 1/2c¢ is a Lagrange multiplier. The first-order conditions associated to (6.3.11)

are,

1
IQ 4+ mAx (2 X A) =;Q (6.3.12a)
m(Q x A) x @ =V,V. (6.3.12b)
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These are exactly the equations we get by eliminating ¢ = m(2 x A) in the relative
equilibrium characterization (LM). The unconstrained variational principle (6.3.11),
parametrized by a, and the associated first-order conditions (6.3.12) appear to be most
suited to the explicit computation of relative equilibria. Before we proceed with such
specific computations we make some general geometric observations concerning relative
equilibria.

Observe that, by taking the inner product of both sides of (iii') with A., we get

<Aey e >E= 0 (6.3.13)

at a relative equilibrium ( A;, pe, Q. ). If ( 7., B, ) is a relative equilibrium

configuration, then the dynamical motion is such that

r(t) = eté r,

B(t) = % B,. (6.3.14)

This follows from (3.4.1) that at a relative equilibrium the dynamical orbit is just a

group orbit.

PROPOSITION 6.3.1

In relative equilibrium, the radius vector r(t) generates a right circular cone.

Proof
From (6.3.14),

< (), r(t) >Sp=< efr,, et r, Sp =< 1, T >E.

Also
_<nt>e & <né>p €
iR €2
<1 €>%
= < rT > — ——
’ €12
< etér,, et £>2
= < Te, Te DE — = {2k
€]
< Te, £>2E

= < Tey Te >E —

|§1?

= constant.

127



Figure 6.3.1. Cone generated by =(t).

o . 3
Thus r(¢) is a circle of radius (< TeyTe >E —ﬂﬁ-_?—%-> centered at C' = Sfliéﬁ-?—iﬁ. See
Figure 6.3.1.

Next we discuss the notion of non-great circle motions. For a rigid body of finite
extent, if the center of (relative equilibrium) rotation C’ does not coincide with the
center C of the force field, then the stationary motion will be called a non-great circle
motion. The existence of such motions is in question. See, e.g. the model problem below

and also the gyrostat example in Rumyantsev [59].

From equation (6.1.9),

'/ CM( + B9 ) = 5= m#
B

|r + Bg ]

|
3
|

( eté re) = me' € r,.

Substituting r = et r, and B = ¢té B, on the left hand side, we get,

_/ GM (r. + B q)
B

=\ — F2
ot BaP dm(q) = m§° r..
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Taking the inner product of both sides with £, we get,

<7e> 7BB- - -
-—/BGM ST E+<§ q>Edm(q)=m<§,£2re>=O.

| re + Beq|?
Hence
dm((_l) / < 67 e (_l >E —

<&, Te > —_— = - d .
&1 E ~/B |Te + B.q l3 B Ire + B.q P m(Q)

Equivalently,

| <&, B. q>E / __dm(a)
< 9, Te > = - d

R e e I e oy

The quantity < £, r. >g is proportional to the cos(§) (refer to Figure 6.3.1), and C
and C' coincide iff < &, 7o > = 0. If the body B were a point mass, @ = 0 and hence

<&, re > = 0. If for a rigid body of finite extent, the integral

< 5, Be (_l >E -
dm 0,
[ T pin@ #

then C, C' are not coincident.

Since

<& re>p =< BTe, BT r.>p

= Qe 'Aea

we conclude that a relative equilibrium (A., Qe, pe) determines a non-great circle motion

iff

Qe Ae # 0. (6.3.15)

One can test the non-vanishing condition (6.3.15) in various settings. We now demon-
strate that there are examples which do not admit great circle relative equilibria. We
first assume that the relative equilibrium is a great circle. Then the equilibrium can be

found by solving ( from (6.3.12) and @ -A =10 ),

Qx I

GM(A+@q) _
— 2 d
/B A+ aj® m(@)

I
o

m|Q*A. (6.3.16)
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|
my,

Figure 6.3.2. The “molecule”

We note that given the norm of , the two equations above are decoupled and are

equivalent to
1. © is an eigenvector of 1.

2. A is a critical point of the function
~ GM m
V = / —_— dm q 4+ — Q 2 A 2.
g dm(@ + FIor

Moreover, the second condition is equivalent to finding the critical points of

. GM
V = /—T dm(q), 6.3.17a
ST al (a) ( )
subject to
%|/\|2 = constant. (6.3.17b)

with m|Q|? being the Lagrange multiplier.
Now we consider a model problem. The body is an asymmetric “molecule”

consisting of six point masses, two on each principal axis. See Figure 6.3.2.
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In this example, we know that I is diagonal and thus for a great circle relative

equilibrium, @ must be along a principal axis. With the notations in Figure 6.3.2, we

have the following conditions,

r, # zo, TiMg, = ToMmg,, (6.3.18a)
yl ?é y27 ylmy1 = y2my27 (6.3.18b)
z1 # 29, 1M, = ZaM,,, (6.3.18¢)

i.e., the body is asymmetric and the coordinate system is assumed to be at the center of
mass of the body. We now study the solutions of (6.3.17), namely, the critical point of V
subject to the condition (6.3.17b). Let |A| = a, and A = (A1, Az, A3). For the molecule,

the function V' can be written as,

o Mz, + Mz, + My
(@ — 2\, + 23)7 (@ 42020 +23)7 (o = 20y + 93)2
(6.3.19)
+ My, + Mz + Mz, -
(a? + 272 + y%)% (a® —2X321 + zf)ir (a? + 2322 + 23)2
Now we parametrize the vector A as
A1 = acosgcosd, Ay = acos¢sind, A3 = asing, (6.3.20)

with

0<f<2r, 0<p< .
This parametrization is valid for every point on the sphere except the intersections of
the sphere with the e; axis. By substituting (6.3.20) into (6.3.19), the partial derivative
of V with respect to ¢ evaluated at ¢ = 0 can be found to be

ov _ =2azm,, 2azom,,
a¢ ¢=0 (012 -+ Z%)% (Cl2 + 2‘%)%

-1 1
= 2az1m, — + .
Qz1Myy <(a2 + zi)% ((12 + z;—’)%)

Because of (6.3.18c), this will never be zero. Thus the solution of (6.3.17) can

(6.3.21)

never appear when ¢ = 0, or on the ej-e; plane. Similarly, be choosing other

parametrizations, cf. (6.3.20),
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A1 = acos¢sing, Ay = asing, A3 = acosdcosé,

and

A1 = asing, Ay = acos¢gcosf, A3 = acososind,

with the condition (6.3.18), we could show that the solution of (6.3.17) cannot lie
on ej-e3, ez-esz planes respectively. We have thus established the fact that for the
molecule system the solution of (6.3.17) cannot be perpendicular to any principal axis.
It follows that A-Q # 0, which contradicts our assumption of a great circle relative

equilibrium. Accordingly, we conclude that for this example, there are no great circle

relative equilibria.

8.4. Approximations

For typical applications in the modeling of planets or artificial earth satellites, the
nominal radius of the orbital motion is very large compared to the dimensions of the
orbiting body. Accordingly, it seems appropriate to consider various approximations of
the gravitational potential based on Taylor series in a neighborhood of | A | = oo or
equivalently | r | = co. While such approximations are common in the literature, it
is unclear whether the symmetries and conservation laws inherent in the problem are

respected by the approximation process.

In the present paper, we take the Poisson reduced model (6.2.5) as the logical
starting point for approximations. The Hamiltonian H is approximated to various orders
of € = (nominal dimension of body) / (orbital radius), by the Taylor series expansion of

the V () potential term appearing in H :

V(N
GM _
= - [ g im@
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_ <@ A> 1§’  3<Q,A>? -
= -5 [ @ ){ A e )

|A[2 AZ T2 A
_ | _GMm GM 3GM s
= [ o ] + [ m[at D+ 3 TF < A, I >] + o(]A]7%) (6.4.1)

In (6.4.1) the first term in brackets is of the order €® and the next term is of the order

€¢?. The €' term is absent due to the vanishing of [ q dm(q).

We will therefore consider two approximate model Hamiltonians,

~ 1 u? GMm
H - = H -1 3
0= 5 <IL, I~ H>+2m VR (6.4.2)
and
- 1 - ul?* GMm
Hy= =<ILI'O> 41 - ——
T2 T3 1Al
GM 3IGM
- ——=tr(D)+ - < A . (6.4.
TN ( )+2|/\|5 <AIA > (6.4.3)

Upon substituting Hy and H. respectively for H in the Poisson reduced dynamics

(6.2.5), one obtains the order zero reduced dynamics;

I =1 x I"'m,

A=A x ITUL 4+ p/m, (6.4.4)
GMm
P = I - —— A
and the order two reduced dynamics;
. 3GM .
I = I! —_—
II x I + BYE AT
A=A XxITH 4+ p/m,
GMm 3IGM (6.4.5)
. -1 _ _ N
g =px ITI I/\laz\ 2|/\|5tr(1))\
3GM 15 GM
—-WI/\-*- I/\|7</\ IAN> A

As already noted at the end of section 6.2, all such approximations admit a common set
of conserved quantities (Casimir functions) of theform Cy = ¢ (JII + A x g |?). Since
the order 0 dynamics is essentially decoupled, it has additional conserved quantities of
the form (| II |2), and the spin energy 1/2 < II, I"'II >. If the body is spherically

symmetric, i.e., I = k1, then the order two approximation collapses to the order zero
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approximation. In general, the order two approximation displays nontrivial spin-orbit

coupling.

With the order zero approximation of A (6.4.2), the relative equilibria (., A¢)
satisfy, from (6.4.4),

1Q, = k@, (6.4.6a)
%{‘Tm,\e = m(Qe X Ae) X Qo (6.4.6b)

By taking the inner product of both sides of (6.4.6b) with ., we conclude that
Ae - Qe = 0, ie. all relative equilibria in the order zero approximation give rise to

great-circle orbits. From (6.4.6b) and the condition Q. -A, = 0, we get the Kepler

frequency formula,

GM\/?
Q]| = (mg> . (6.4.7)

Summarizing, the only relative equilibria for the order zero approximation are
(a) Q. is a principal axis of I;
(b) A is a vector perpendicular to €. satisfying the Kepler formula (6.4.7);

(¢) pe = m (e X A) completes a triad. (6.4.8)

With the same assumptions as (6.4.8a) and (6.4.8b) above, it is possible verify the

existence of “uniformly spinning solutions” to the order zero reduced dynamics:

() = IQ(t) = IQ,

A(t) = exp (tl ;;e | Qe) e (6.4.9)

w w A
= To 1 e] e
w=m (1 ooy eep (1 8) B

with the modified Kepler frequency formula,

@+ 1D = (fom (6.4.10)
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The quantity w measures the body spin relative to a moving Frenet-Serret frame at the

center of mass of the body.

For the order two model (6.4.3), (6.4.5), the first-order conditions for the variational

principle (6.3.11) take the form

1

(I - maDHO = (; -m|AH)Q (6.4.11)
2y _ _ GMm 3GM
m|QFEA-=m(@ A= —_lf\|3/\+ ——-——2|/\|5tr(1)/\
3GM 15 GM  r
topE Rz o I

The equations (6.4.11) admit a family of solutions (relative equilibria) corresponding to

great circle motions:

(a) Q. is a principal axis (eigenvector) of I with corresponding principal moment of

inertia I;, ¢ = 1, 2, 3;

(b) Ae is a principal axis (eigenvector) of I perpendicular to ., with associated

principal moment of inertia I;;
(c) pe = m (e X Ac);

and, the following modified Kepler frequency formula holds:

GM \'"* 3(L - 20 + I)Y?

In the above relation i, j, k are distinct and take values in {1, 2, 3}. Hence
the correction term in (6.4.12) may be of either sign. It follows that for the order
two approximation there are twenty-four 1 parameter families of relative equilibria
(accounting for £ being in each of the six directions along the principal axes (with
sign) and four directions for A corresponding to each choice of {2), the scalar parameter
being 8 = | Q|* = | £|? asin Section 5.

This conclusion appears.to be a classical result exhibited in different form. See for

instance the book of Beletskii [8]. However, the hamiltonian point of view together with

135



the approach of reduction has entirely eliminated the formidable mess of Euler angles

and such.

In the following, we show that for practical parameter ranges, all the relative

equilibria in the order two approximate model are great circle motions. Let

(I-mAAHQ = af,

or

I1Q - a2 = mATQ.

With the notation 7 = ATQ, we have

mrA = IQ - afd. (6.4.13)

We note that 7 # 0 corresponds to solutions that are not great circles, while 7 = 0

implies a standard eigenvalue problem. The dot product of (6.4.13) with Q then yields

1

* TP

(QTIQ - mr?),

and substitution in (6.4.13) gives

1

RE

A (2? -eahHio + Q. (6.4.14)

——-—1 T
[

Taking the dot product with 2 of the second equation in (6.4.11), we get the following

equation

3 15 | p 3 7 )
= 1] ~ —— ) = 0. (6.4.15
(m+ 2|/\|2trl 2,/\‘4)\ N + g IA [ )

Assuming 7 # 0, and multiplying (6.4.15) by 7, we have
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3 15 3
m+ ~tr] — AT 72 —07 = 0.
( TN ST ™+ IMZQ IrA 0

With the expression for 7\ in (6.4.14), we obtain the equality,

3

— I - AT A T
(m+ e 2m4 : "L|A|2|fz|2’Q 1)
\ o (6.4.16)
—mI/\PIQIz {IQ] 192" — |Q IQI }

But we know that

Q2102 - 197102 >

Thus (6.4.16) can have a solution with 7 # 0 only if

3
t] — —2 AT 10 <
+ BN 2|/\|4 IN+ e |Q|2Q 10 0,
which can be true only if
15 .
- <
m 2|/\|4/\ I 0,
or
15 < pas
= >
A IN 2, (6.4.17)
where
< A . lal® qa’ , .
A= —, I= [ 5dm 1 - ——dm(q).
B P4 e 4

It is easy to see that for large A, (6.4.17) is not satisfied. In particular, to satisfy (6.4.17),
2

the ratio {—2—’(7 must be greater than Ilg But for typical artificial satellites, this ratio is

approximately 1071°. For the motion of moon around the earth, it is approximately

1.6 x 10~%. Thus we have shown that for the practical case of large orbit radii, the
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24 relative equilibria (for the second-order approzimate model) are the only relative
equilibria. This conclusion is of special interest since we have constructed a numerical

example (the “molecule” in Figure 6.3.2) in which the ezact model has no great circle

relative equilibria.

6.5. Stability of Relative Equilibria in the Approximate Models

In this section, we study the stability properties of the relative equilibria for the
approximate models discussed in Section 6.4. For both order zero and order two cases,
the triple (II, A, ) is a relative equilibrium if the three vectors are along the three

principal axes. Without loss of generality we let
I, = |Ilex = 5L|Qey,

Ae = A €2, (6.5.1)
m|II}{A
He = —%—‘63 = miQ|}| e3,

where || and |A| are related through the appropriate form of the Kepler frequency

formula, and

I e = I1€1,
Iex = Le,
I ez = 1363.

We shall examine the stability of this relative equilibrium in various cases determined

by the relative magnitudes of the principal moments of inertia I;.

For the order zero reduced dynamics (6.4.4), the energy-Casimir method of
Chapter 5 is inconclusive since the second variation of the energy-Casimir function is
only positive semi-definite (has a zero eigenvalue). We linearize the system around the

relative equilibrium (6.5.1). Let

§z = (610, 611y, 613, 61, 6Aa, 6As, Spu1, 6ua, 6p3)T. (6.5.2)

We have the linearized system
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bz = A bz,

where A is the matrix,

[ 0 0 0 0 0 0 0 0 0

0 0 Az 0 0 0 0 0 0

0 Aso 0 0 0 0 0 0 0

0 0 B 0 o X 0o o

3 m
I 1
0 0 0 0 0 B 0o L o
0 0 0 o - o o o %
[TIA GM

0o -zgll o _=meM o 0 0 0 0
m|IT||A 2mGM 84|

i o o =M o o o 4

0 0 0 0 0 -zmey o _M

1
with
1 1 11
Ay = (= - )0 2 = (=-=)m).
23 (11 13)| I, As (12 II)IHI
By the frequency formula (6.4.7), we can write A in the form of

0 0 0 0 0 0O 0 0 0

0 0 Alig) 0 0 0 0 0 ©

0 -Efhyg 0 0 0 0 0 0 ©

0 0 1A 0 0 o X o o

3

0 0 0 0 0 o 0 L 0
0 0 0 0 Y o o o L

o -zBR o0 _mep 0 0 0 0 0
miQ||p| ‘I"l A 0 0 0 2miQ)? 0 0 0 o
0 0 0 0 0 -m?® 0 =-jof 0

Denote the upper left 3 x 3 matrix by A; and the lower right 6 X 6 matrix by A,. It

can be shown that

£ det(sI — A1)

-1 [, -1T o
pa(s) s (32 ; i——”——‘—mr) ,

I3 I

p2(s) = det(sI — Az) = $* (s* + |Ql2)2 .
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The characteristic polynomial of A is p(s) = p1(s)ps(s). It can be further verified that
the minimal polynomial of A is
m(s) = & (¢ + B2 ap) (2 4 jap).

The occurrence of a repeated root of the minimal polynomial at s = 0 implies linear
instability of the relative equilibrium (6.5.1) for the order zero approximate model (See
Gantmacher [22], Theorem 3, pp. 129). Alternatively, the one parameter family of
“uniformly spinning solutions” given by (6.4.9) represents a perturbation of the relative
equilibrium (6.5.1) that departs any small neighborhood of the relative equilibrium in
finite time, and hence we have instability. We note that this conclusion is independent

of the relative magnitudes of the I;’s.

REMARK 6.5.1

The projection of (1I, A, 1) to the space of II projects the order zero dynamics to
the usual rigid body dynamics. For this projected dynamics, the equilibria in which the

vector II is along the maximum or minimum principal axes are stable.

We now study the stability of relative equilibria of the order two reduced dynamics

(6.4.5). For the relative equilibrium (6.5.1), we have the following identity, cf. (6.4.12),

GM 3 9
2 —_— ‘
ml|* = NE (m—}- 2I/\|2tr(1) 2|/\12I2) . (6.5.3)

Now we discuss sufficient conditions for the stability of these 24 relative equilibria. We
apply the energy-Casimir method discussed in Section 5.2. The general form of the
energy-Casimir functional for our case is

1> mGM GM 3GM (l 2)
- - - tr(I) + ——=A" 1A ST+ Ax ).
5 NN r(I)+ +¢ | FIT+A x4l

2N
(6.5.4)

Hy = %HTI‘III +

The first variation of H, can be found as §H,(TI,\, ) = VHy-éz, where

Il + ¢'n
- - T .
VHMAp) = | § (m+ 35 - 15R) A+ YD+ @A |
L — é'An
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and 6z is as in (6.5.2), and,

= I+ AXu

The matrix representation of the second variation of Hy is

VIR, A\ ) £

/I_l + ¢11 + ¢"nnT _¢/’[L _ ¢”nnTﬂ ¢/j\ + ¢"nnT:\\
¢'i + ¢"innT %Alg_ (m+ %tﬁl’ lgA;I)\) 1 —¢'f1+¢>'ﬂ5\

_3eym <m+ 25[13/\1-1 35ATI,\> MT 4¢”innT A
(2%
15 A/\TI 15}C‘;M I/\AT

3GMI ¢,/l/-l d)"ﬂnnT/l

-¢'X = ¢"AnnT ¢+ ¢ Ai + ¢"AnnT L1 - ¢/3%
\ —¢"nnTA /

In the above formulae, ¢' represents its value at |n|?/2, and the same convention is

applied to ¢". Now we find the variations at (II., A, ). By using (6.5.3), we have
[2fe

VHy(Mley Aeypte) = (14 ¢'K) | m|A||Q)2e,
1A|Q]es

1

where

K = I1+m|/\‘2.

Thus in order for the first variation to vanish, we require 1+ ¢'K =0, or

¢ ==

e (6.5.5)

Substituting these values in the second variation formula, we get a 9 X 9 symmetric

matrix F = V*H o(Iey Aey tte) with nonzero components,
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R-5 m|QfIA| Al
i, = = - A
11 R’ Fis 7 Fig 7
K-I m|Q]A|
F- = = ————
22 LK Fyy T
K-I By
F D e——— = —
33 LE Fs7 i
L,  3GM
— 2-1
Fy = m|Q| *E-*-—’-/\—I—S—(Il '—Ig), (656)
A2, 2mGM m|A[?
F. R 2 m' - —
55 m|Q*(4 + )T D Fsg Q1+ —%—),
IGM
Feg = m|Q|2+‘|':\‘|5—'(IS—I2), Fes = |9,
_ I1 _ 1 _ R—m’/\lz
Frp = — fas = — Foe = R
where
__1_ — i_ "2 2
7 T " K*|Q|°, (6.5.7)
With the lower triangular matrix L given by nonzero elements as,
_ _Lm|Q|A| .
Ly = KL (6.5.8a)
— m|Qf| AL
Ly, = A (6.5.8b)
_ L]l
Irs = —¢— o (6.5.8¢)
1 .
- 6.5.
Lgs T (6.5.8d)
LA
= ———(m|Q 5.
Loy = 7 (miQlles +1), (6.5.8¢)
Usg .
= — 6.9.
Les = 5o (6.5.8f)
K-1 |
= - 6.5.
Uso IQ[(1+R—11>’ (6.5.89)

(6.5.8h)

. EKE-L\ 2mGM
Dss = m|Qf’ (4+ - ‘)— i

R-1 A3 7
and all the diagonal elements are 1. we can transform F' into a diagonal matrix
D =LFIL7,
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where

. (R-I K-, K-1I
D=d _ _
ag{ LR’ LK’ DLK s (It = I2)Das, —Dss, Feg,
h-1Iy U, R-K }
TN I3 — D y ,
m(K — 1) (I3 = I2)Dss, 35~ + BT
with
D, = QL 3GM
M KL TP
e miAP Feg

(Since congruence transformations preserve the matriz inertia, we can read off the
number of negative eigenvalues of F' from D.)

We shall now consider the case in which,

I > I3 > I

To have stability from the energy-Casimir method, we require that all the eigenvalues of

F ( equivalently of D ) be positive. This holds if

‘R;h > 0, (6.5.90)
Dss < 0, (6.5.9b)
and
gi mé;i)>o. (6.5.9¢)
For (6.5.7), we have
1225 =1-%==T%ﬁ+wnme.

Thus (6.5.92) holds if ¢” > 0. We next consider (6.5.9b). By the definition (6.5.8h) of
Ds5 and the frequency formula (6.5.3), we get

Dss = miof? (4+ 528 2
5 = m R-1 1+2—;‘—%P't7‘1-—m%17f2 )

Let
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_3
2m|A|?

1D

(I + I — 2I).

For the case under consideration € > 0 and for |A| large compared to the typical

dimensions of the body, ¢ is small. The other term,

K-I _ mp]?(1/K - ¢"K2|Qf)
R-I, = mPEF/K+¢"LEQF

For |A| large and ¢" large enough,

_ AZ - //I."z Qz 2
E-h  mP(=¢"KC10F) - m\2 a2 _, (6.5.10)
R'—Il ¢"I1]X2|Qi2 Il
Thus
D55 jand m|Q|2 (4——2-'—-9)
- 1+e¢ ’

for |A| large and ¢" large enough. Since # >> 4, we have Dss < 0. This is (6.5.9b).
Now we look at (6.5.9¢). It is easy to see that if we show

R-K

2 —————————————————.
Uss ¥ E= 1)

Dss < 0, (6.5.11)

then together with (6.5.9b), we have (6.5.9c). From (6.5.10), for |A| large and ¢" large

enough,

U59 =~ -—lQl(l—- 9)

From the definition (6.5.7) of K, we have

R-K

= = ¢”IX’3|Q‘2-

Thus
R-K " K310 K
m(R-1) E)I%Ji+¢"lilf2|9l2 A

= 1+6,

for |A| large and ¢" large enough. Now we verify (6.5.11). Under the same condition,

R-K . s 1 2( 2 )
o ~ 1QP1-8)P+=—(1+0OmQ*{4- — -9
U59+m(R—Il)D55 1=( ) +m( + 6)m|Q Toe

2 2
_ 2({c_ _~%__ - < e
= 19| (5 1-i-€+(1 1+e)>

i?

~10Q)%8
< 0.
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Thus (6.5.7) hold for |A| large and ¢" large enough. We have the following theorem.

STABILITY THEOREM 6.5.2

For the order two approximate model, the relative equilibrium

III = LI
IAX =LA
Ip = Iy

is stable if |A| is sufficiently large and,

L > I; > I,

This shows that the relative equilibrium in which the body center of mass traverses
a circular orbit, the angular velocity lies along the principal axis of the body with the
largest associated moment of inertia ( minor axis of the ellipsoid of inertia ), and the
radius vector is aligned to the principal axis with the least associated moment of inertia

( major axis of the ellipsoid of inertia ), is a stable relative equilibrium.

HISTORICAL REMARK 6.5.3

A similar theorem appears in Beletskii’s book [8], pp. 94-102. Beletskii uses a
spatial/inertial model of the coupling between translational and rotational motion and
presents arguments based on a Lyapunov-Chetayev approach [13], and uses in effect
the variational equations about the stationary motion. In contrast, here we make
consistent use of modern hamiltonian methods and reduced variables. The methods
of this paper yield a nonlinear stability theorem and generalize to nonrigid and other
complex configurations. See for instance the examples considered in [38], [44], [33], [41],
l42], [56].

I

The above discussion deraonstrated that it is sometimes not straightforward to

explicitly find an appropriate function ¢ in the energy-Casimir method. In Section 5.3,
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we describe a more classical characterization of relative equilibria as critical points of

the constrained variational principle,

mia Hy (I, ) (6.5.12)

subject to  C(II,A\,u) = constant

where H, is the Hamiltonian (6.4.3) and C is the Casimir 2|+ X x pz|?. The associated
first-order conditions coincide with the characterization (LM) of relative equilibria, with
the unknown constant a being interpreted as a Lagrange multiplier.

The Lagrangian ( in the sense of optimization theory ) associated with the above
constrained variational principle is recovered if in (6.5.4) we take ¢(z) = —a z.
Consequently the second variation can be recovered as a special case of that calculated
in (6.5.6). When ¢ is linear, ¢” = 0, and consequently, R = K. Therefore for the

second variation F* of H — a , cf. (6.5.6), we have the matrix elements

K-§ m|Q] Al [A
[s4 = {s3 - U0 ch D b §
Fi LK K 0w K’

K-I m|Q[A]
Fo=7Zx B="g o
O

I  3GM
Fg = mlﬂl’f+—|/\—|5—(!1 - Iz), (6.5.13)
o m|A%. 2mGM o m|AJ?
Ry = —miaPes o)+ ZEE Ry = e+ TR
3GM 3

F&; = mIQ‘2+ |AI5 (Iil_I2)7 F68 = th,

I 1 K — m|A?
o« _ _*1 a L o o 22 T IAL
F77 - mI(? ‘F88 TJZ’ F99 mK bl

A comparatively simple Gaussian elimination then reveals that F'® is congruent to

D® = diag{KIl—:KI1 , KI;}!Z , KI?:-KIB , (Iy = In) D44, — D5y, Fés,
m—‘([_l-lf_TISI;;_), (I3 — I3) Dgs, 4'%': },
where
D = smiQf - QTI\C";M
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and the other coefficients are as defined previously. From the identity (6.5.3), we have
further that

o 2
DY = QFF {5~ —].
55 m| l( 1+e>

For |A| sufficiently large, the expressions for the various coefficients reveal that K
is large and positive, and D4y, Dg;, Fss and Dgg are all positive. Consequently the

signs of the entries of D® are determined by the signs of the entries

{+,+’+1(Il_12)1"'7+7(I1_I3)7(I3—-I2)’ +}'

We shall restrict attention to satellites in which the inertias are distinct so that
F?* is nonsingular. Otherwise additional symmetries arise, and the analysis is slightly
more complicated. There are six cases of distinct inertias. See Table 6.5.2, in which the
number of negative eigenvalues of F'* is shown in each case, and each case is assigned a

reference number in parentheses.

Table 6.5.2. Rigid Body Inertia Combinations

I min I, middle I, max
I > I3 (1)1 (2) 2 (3) 3
I < I3 4) 2 (5) 3 (6) 4

According to Theorem 5.3.2, it suffices to analyze whether the condition

(h, F*R) >0, Vh#0and (VC(Ile, Aette), h) =0 (6.5.14)

is satisfied. Because the subspace of admissible variations & has codimension 1, condition
(6.5.14) cannot hold whenever F* has two or more negative eigenvalues. Accordingly
the only case in which (6.5.14) might hold is case (1), Iy > I3 > I, in which F is
nonsingular and has precisely one negative eigenvalue.

To analyze (6.5.14) in case (1), we shall apply a general result bearing upon
families of extremals to variational principles. Notice that (6.5.1) actually defines a

one-parameter family of relative equilibria which can be regarded as being parametrized
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by the magnitude of the radius of the orbit, i.e. [A]. But the multiplier a is related to
|A] through o = 11—+715W (cf. (6.5.5)), so the family can also be parametrized by the

multiplier @. Along this family the Casimir can be written, using (6.5.1) and (6.5.3), as

1 1
ST+ Al = SIQF(E +mIAP)

_ OM(L + mA)?
mp[

3
(m|1\|2 + 5([1 - 20, + I3)> . (6.5.15)

Consequently, for || large the Casimir is an increasing function of |A| along the family
of relative equilibria, and consequently a decreasing function of . We may now apply

the aforementioned result.

LEMMA 6.5.4 (Maddocks [44], Lemma 5.2, pp. 316)

Suppose a family of variational principles of the type (6.5.12) have a family of
critical points z.(a) parametrized by the multiplier . Moreover, suppose that the
second variation at a particular extremal is nonsingular with one negative eigenvalue.
Then the second-order sufficient conditions (6.5.14) at that extremal are satisfied if and
only if the constraint C is a decreasing function of the multiplier o at that parameter

value.

COROLLARY 6.5.5

Solutions (6.5.1)in case (1), I; > I3 > I, are Lyapunov stable for all |A| sufficiently

large.

Proof
It has been shown that the hypotheses of the previous Lemma hold, and that C(a)
is decreasing for relative equilibria with |A| sufficiently large. Thus condition (6.5.14)

holds and Theorem 5.3.2 then applies to provide the desired result.

The configuration of this stable relative equilibrium could be depicted in Fig-

ure 6.5.1.
Accordingly we have rederived the Stability Theorem proved in Theorem 6.5.2.

We notice that here we have not proven instability in the order two model. Actually
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Figure 6.5.1. Configuration of the Stable Relative Equilibrium

the results of Maddocks [45}(Section 5) can be applied to show that for large |A| the
relative equilibria in any of the cases (2),(4),(6) in Table 1, are dynamically unstable. An
outline of the analysis is that when F'® has an even number of negative eigenvalues and
C(a) is a decreasing function, then the linearized dynamics must possess an unstable

real eigenvalue.

We remark that the energy-momentum method developed in Section 5.4 can be
also applied in the order two approximate model. The same sufficient conditions for
stability could be obtained. Since we are more interested in applying that method for
the problem including momentum wheels on the rigid body, we present it in more detail

in the following chapter.
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CHAPTER VII

Gyroscopic Control

In Chapter 3, we introduced the notion of a gyroscopic system with symmetry.
One example was discussed in Chapter 4, namely, the multibody analog of the dual-
spin problem. Equipped with the tools for stability analysis developed in Chapter 5,
we investigate several key examples that incorporate gyroscopic effects. We give precise
sufficient conditions for stability in each example. It is useful to view each of these

examples as resulting from gyroscopic feedback as defined below.

7.1. Gyroscopic Feedback

The notion of gyroscopic control is isolated here to highlight the role of the
gyroscopic term from the viewpoint of designing control algorithms. A simple mechanical
system with symmetry with exterior forces can be transformed into a gyroscopic system
with symmetry by using suitable feedback laws, that we refer to as gyroscopic feedback.

This process is described in the following theorem.

THEOREM 7.1.1

Consider a simple mechanical system with symmetry, (@, K,V,G) in which the

riemannian metric is given by, in local coordinates,
K(2)(v, w) = vT M(z)w. (7.1.1)

The exterior force exerted on the system is denoted by a horizontal 1-form (a, 0). Let

Y be any G-invariant 1-form on @ . Then, with the feedback law,

Er3

- - T
a(z, v) = — <(?l (z) - %}% (z)) v, (7.1.2)

the closed-loop system becomes a gyroscopic system with symmetry (Q,K,Y,V,G)

where,
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Y(z) = M(2)™! Y(2). (7.1.3)

Proof

The dynamical equations for (Q, K, V,G) with exterior force can be found to be,

M(z) 2 =T 2.2 — Z—:(z) + a. (7.1.4)

where 7 is defined in (3.2.6b). With the feedback law (7.1.2), it is then easy to see
that (7.1.4) becomes (3.2.7) which, in turn, corresponds to a system with Lagrangian
in the form of (3.2.2). With the transformation rule (7.1.3), the system can be further
identified as a gyroscopic system with symmetry, (Q, K,Y,V,G).
|
Accordingly, we have a family of gyroscopic feedback laws induced by G-invariant
1-form. The techniques used in analyzing gyroscopic systems can then be applied.
In particular, the methods for stability analysis based on the energy-Casimir method,
the Lagrange-multiplier method, and the energy-momentum method as discussed in
Chapter 5 are applicable. The gyroscopic term affects the dynamical behavior in many
aspects, as will be seen in the following sections. As a consequence, a suitable gyroscopic
feedback may be chosen to fulfill design objectives. Much work remains to be done on

general methods for choosing ¥ .

7.2. Rigid Body Attitude Control

We first consider the well-treated single rigid body dual-spin problem, see e.g. [36]
[3]- The system consists of a rigid body, the platform, with three symmetric rotors, the
driven rotors, spinning at constant speeds relative to the platform along the principal
axes of the platform. See Figure 7.2.1. Following similar notations in Chapter 4, let
B € S0O(3) denote the attitude of the platform with Q its instantaneous body angular
velocity. Let I, Is,, ¢ =1,2,3 be the moments of inertia of the platform and the driven
rotors, respectively. The constant relative angular velocities of the driven rotors are
denoted by a vector © = (é] ,92,93). The Lagrangian of the system takes the form,
cf. (4.3.6),
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1

L(B, Q) = 3 <9, 10>p + <O, 1°0 >, (7.2.1)
where
3
I=1+51Ig, (7.2.20)
i=1
I° = diag((Is;)1(Is,)2 »(Iss)3)- (7.2.2b)

Namely, J is the total moment of inertia of the platform with locked driven rotors and
IS is a diagonal matrix consisting of the components of the moments of inertia of the

driven rotors along their spinning axes. Both matrices are expressed in the body frame.

Figure 7.2.1. Dual-spin Problem

Letting [ = IS0, (7.2.1) can be further written as

L(B, Q) = =<Q,J0> + <Q, 1>, (7.2.3)

DO =

by dropping the subscript g for the Euclidean inner product. This system belongs to

the category of gyroscopic systems with symmetry with the following entities,
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Q = 50(@3),

I((B’EL], B’{L'_?) = < uy, Jug >,

Y(B) = Bi-1I, (7.2.4)
V(B) = 0,
G = SO(3),

where Biy, B, € TgSO(3). The group action here is, cf. (3.5.6),
G x Q - Q?
(R, B) — RB,

with the infinitesimal generator, cf. (3.5.7),

-

£o(B) = ¢ B,

for £ € G. It is straightforward to check that K, Y are both invariant under the group
action. To find a relative equilibrium, we apply the principle of symmetric criticality,

Algorithm 3.4.4. Fix £ € G. The augmented potential V¢ is found to be
1
Ve(B) = - <Y(B), é(B) > - 5 < &a(B), £a(B) >,
= —<J, IBTe> - -;- < BT¢, IBT¢ >, (7.2.5)

= -<¢ Bl> —%<§, BIBT¢ > .

A critical point B, of this function gives us the relative equilibrium (B, é B.)eTQ.
Letting v = BT £, the problem of finding the critical points of V is equivalent to finding

the critical points of

- 1
Ve(v) = = <p, 1> — 3 <n Jv >, (7.2.6)

subject to the constraint
lv] = |€| = constant.

This function is in fact the one defined in (3.4.8) as a function on @ /G¢. Since the group

here is SO(3), as discussed in Section 5.4, V is sufficient to determine stability. We
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may now vary the constant vector ! and see how the phase portrait is affected from Vg.

In particular, for

| = (ll, 0, 0), and J = diag(Jl, J2, Jg), (727)

we plot the function ffg on the sphere |v| = constant for different I; in Figure 7.2.2.

Notice that in Figure 7.2.2(a), the minimum or maximum points of V; correspond
to rotation about the axes with largest or smallest moment of inertia, respectively. These
are stable relative equilibria. The intermediate axis corresponds to the saddles of Vf.
These reconstruct classical stability results for rigid body dynamics. It may be observed
that the number of critical points of V; reduces from six in (a) to two in (d) with
increasing l;. Also the critical points change their properties with different /;. This
is the phenomenon discussed in [34] [36]. For sufficiently large I;, the state that the
platform rotates about the axis ! could be made to be the only stable critical point.
Accordingly, with a suitable damping mechanism, attitude acquisition of the platform
could be achieved through this process. By varying [, we could thus “shape” the phase
portrait as we desire. This exhibits the essential idea behind gyroscopic control. Namely,
by varying the gyroscopic field Y, the phase portrait, or the structure of the dynamical
behavior, could be controlled.

Now we apply the energy-momentum method to this example to get some quanti-
tative understanding. Since for this problem, cf. (7.2.4), G = @, we need ounly consider
the Arnold block for stability, cf. Corollary 5.4.12. Also since G = SO(3), the anal-
ysis in (5.4.51) could be applied. Accordingly, we check the positive definiteness of
I «(Be)™* — %1 in any direction except £. Here the locked inertia dyadic can be

found through, for £, 7 € so(3),

(€, Loek(B)})) = < €B, 7"B> = <€, BIBTp> .

It follows that, cf. (5.4.46),

?ock(B) = BJ BT' (728)

The element in G* induced by gyroscopic field Y is determined from, for 7 € so(3),
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Figure 7.2.2. Plot of V¢

155



(Iy(B), #) = < BI-l, )B> = < B, n >,

‘;hus, cf. (5.4.47), the gyro-momentum is,

¥(B) = Bl (7.2.9)
At relative equilibrium, cf. (5.4.49a),
pe = B.JIBT¢ + Bl (7.2.10)
In order to satisfy the criticality condition, (5.4.45), we need
B.JBT¢ + B = )¢ (7.2.11)
Now let e;, ez, e3 denote three principal axis of the platform, and
Je = Jiey, Jex = Joeq, Jes = Jyes. (7.2.12)

Let

£ = |¢|Bex, 1 = lje;, with Ij >0. (7.2.13)

This gives rise to a relative equilibrium with

A= ~—']-1-|—§-|-—:i-—-{-1—— (7.2.14)
14
Since I? ,(B)~! = BJ"'BT, we have
. +-3% 0 0
Fok(Be)™ = 31 = B 0 -1 0 BT.
o o %-i

By taking out the direction §, stability is ensured by the conditions

1 1 1 1
—_ - d —-- 0,
A > 0, an AR >

which is equivalent to, by substituting (7.2.14),
L > (J2 - J1) lf!, and I; > (J3 - Jl) lf' (7215)

Moreover, from (7.2.10), we know that |u.| = J1|€] + 1. Thus conditions (7.2.15) are

equivalent to the conditions
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ll Jy — Jl
> , 7.2.16a
|1uel - ll Jl ( )

L Js ~ Ji
> . 7.2.166
el - 0 7 (7:2.165)

These sufficient conditions for stability are useful in design/choice of [;. For example, if

we want the platform to rotate stably about its intermediate axis, we have

J3 > J1 > Js.

Condition (7.2.16a) is satisfied trivially. We then design the relative angular momentum
[ to satisfy Iy > (J3 — J1)|€]. The stable motion about its intermediate principal axis
is thus obtained. In {11} [10], a variety of feedback laws were developed for rigid body
dynamics with exogenous force where the closed-loop systems are of the dual-spin form
in a generalized sense. While the energy-Casimir method was used there, as illustrated
above, the extension of the energy-momentum method developed in this dissertation

could be directly applied.

7.3. Rigid Body with Momentum Wheel in a Gravitational Field

In this section, we consider the motion of a rigid body with rotors in a central
gravitational force field. This problem is a hybrid of the problems discussed in Chapter 6
and in Section 7.2. We will utilize the energy-momentum method for stability analysis
and will recover the stability conditions of Chapter 6 when we specialize to the case of

no driven momentum wheels.
The system configuration can be imagined by replacing the rigid body in Fig-
ure 6.1.1 by the assembly depicted in Figure 7.2.1. Following similar notations in previ-

ous discussions, the system may be put into the framework of gyroscopic systems with

symmetry with the following entities, cf. (6.3.1), (7.2.4),
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Q = SE(3),
I(((Bﬁl, 1)1), (B’&z,vz)) = < U, JUZ > +m< v,y >,

Y(B, r) = (BI-11, 0),

GM ) 3 GM _
V(B, r) = "/ |r+B_q|dm(q)_ Z; /s.- ms‘(ﬂdm(qz),

G = 50(3),

(7.3.1)

where J, I is defined in (7.2.2a), (7.2.3) respectively and m is the total mass of the body

and rotors. The lagrangian of this system can be then written as, cf. (6.1.3), (7.2.3),

L(B, r, Q, v) = % <Q,JO> + % lvo+ <Q, I> -V(B, r). (7.3.2)

Analogous to the discussions in Chapter 6, we could approximate the system by
the approximations of the potential function V. In the following, we will consider the

order two approximate model, namely, V is approximated by, cf. (6.4.1),

mGM ~ GM 3GM ’ ,
el 2 tr(J) + 55 <r BIBr>. (7.3.3)

V(B’ T) = - 2|Tl5

The group action is the same as in (6.1.4), with the infinitesimal generator shown in

(6.3.2). The locked inertia dyadic associated with the riemannian metric can be found

as, cf. (6.3.3),
I%..(B, r) = BIBT — mir. (7.3.4)

The gyro-momentum in G* induced by the gyroscopic field is the same as in Section 7.2,

namely,

¥(B, r) = BL (7.3.5)

The momentum mapping associated with this system is then, cf. (5.4.17),for n € G,

n — (BIBT — m#f)n + B (7.3.6)

Now we apply the principle of symmetric criticality. For fixed £ € G = so(3) & R3,
the augmented potential V; is

Vi(B, 1) = V(B r) — + <& (BIBT — mif)é> — <BlL £>.  (13.7)
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The derivative of the augmented potential can be found as
DVe(B, r)-(uB, v)

_ GM 3 15 7
“<|r|3( T o T T gt

3IGIJSM BJBT v >

3GM 2 .
RE -#BIBTr + ¢BIBTE + £Bl, u>.

BIBT ) r — méi€

. (7.3.8)

+ <-

Accordingly we get the conditions for relative equilibrium, cf. (6.3.5), (6.4.5),
3IGM

§x (BIBT¢ + BI) = T == rx BIBTr,
GM
mé x (rx§) = W( 2I i) - 2! |2 TBJBTr> r (7.3.9)
_ 3GM
|ri®

Now for e, ez, e3 being three principal axes of the body with rotors, i.e. Je; = J; e;,
for i = 1,2,3, we let, cf. (7.2.13),

= IEI Bel, l = 1181, with l] 20,

(7.3.10)
r = |r| Bes.
This satisfies (7.3.9) with the modified Kepler’s frequency formula, cf. (6.5.3),
GM 3
2 s
= t 3.
mif = T (mt @ - ) 731

Conditions (7.3.10) gives rise to the relative equilibria defined in (6.5.1) discussed in
Section 6.5 for the case | = 0. With the relative equilibrium (B., r.) satisfying (7.3.10),
the momentum mapping g. is, from (7.3.6),

te = (BJIBYT — m# .)€ + Bl

(i + mlre[’) € + Bel, (7.3.12)

(i + mlrel) €] + 1) Bees.

The Lie algebra of the isotropy subgroup G, can be expressed as, cf. (3.1.13), (5.4.44),
Guo = {n€R’ : nxpe =0},

(7.3.13)
= {cBeey €R?®: ceR}.
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The orthogonal complement of G,, with respect to the locked inertia tensor, as defined
in (5.4.18), is
Gr = {CeR® :<(, (BJIBT - m#.f.) Beey > = 0},
= {(eR’ : <(, (Ji+mlre]’) Beey > = 0},
(7.3.14)
= { ¢, B.ez + ¢, B.e3 eR® : ¢, o €R }.
= Span { B.ez, Bees }

We are now ready to apply the energy-momentum method to study the stability
property of the relative equilibrium (7.3.10). Before doing so, we need to find the map
ident Y, defined in (5.4.49c),

identy';(B, r)- (4B, v)
= — (DI{,x(B, r)- (4B, v)§) — DI(B, r)-(4B, v), (7.3.15)
= —aBIBT¢ + BIBTat + mirE + mivE — 4Bl
Define

a a
v = BTy, v = BT».

The components of u, v will be denoted by (u;, us, us) and (vy, v, v3), respectively.
At relative equilibrium (7.3.10}, we write

identx;(Be, re) - (@B, v)

= identxso(Be, Te)* (Bel, Bev) (7.3.16)

Be(—Jllé'Iﬁel + [£lJae; — m|é]|re|(Ves + veer) — llﬁel).

The block diagonalization technique is based on the decomposition of the space V defined
in (5.4.29). For the relative equilibrium (B., r.) satisfying (7.3.10), we check, since
Gu. = Span{B.e1},

< (ﬂBea 'U), (Beay B,ezl Te) > < B;ru7 Jel > +m|"'el <wv, B/e-gl Be32 >,

= Jiu; + mre|vs.
Thus the space V can be represented as

V = {(B.d, B.v) : Jiui + mjrjva = 0 }. (7.3.17)

It has the subspace, cf. (5.4.31),
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Vric = {((Be, re) : C€GL }

. (7.3.18)
= Span { (B.e3, 0), (B.e3, —|re|Bee1) }.

From (7.3.16), we may find the other subspace VynT, defined in (5.4.32), as follows. In

order to have
< Beez, B.(-Ji|lues + [¢|The; — mif]|r|(Ves + vaer) — lie;) > =0,

< B.es, Be("Jllflﬁel + |§|Jf1e1 - m|£||r]({'e3+v2e1) - llﬁel) > =0,

we get the conditions

(1= Rl + L)us = mig][refvs, (7.3.190)

(1 = J)IE| + h)uz = 0. (7.3.19b)

Assuming (Jy — J3)|€] + 11 # 0, we get the representation of VinT,
VINt = {(Bell, Bev) : Jiuy + mirejvy = 0,
((Jr = )] + L) us = mig}|re|va, (7.3.20)
u = 0}

Next we check the conditions in Theorem 5.4.8. First, since for this example G = 50(3),
as in the previous example, checking the Arnold block becomes checking the positive
definiteness of Ijpcx(Be,Te)™ ! - %1 in any direction except £. At relative equilibrium

(7.3.10), we may express the locked inertia dyadic as

fock(Bes Te) = BeJBI, (7.3.21a)
where .
Jl + mlre|2 0 0
J = ( 0 J, 0 ) : (7.3.218)
0 0 Jz+mr|?

The scaler A can be found through (7.3.12),

(/1 + mire?)I€l + b

A |

(7.3.22)

Consequently, we may express
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>
(==
(==

) TtmlrE T
Ilock(Bea Tc)_l - Xl = Be 0 . 712' - %“ 0 BZ
0 0 L

(7.3.23)

By taking out the direction £, which is along B.e;, positive definiteness of the Arnold

block is ensured by the conditions

By substituting A in (7.3.22) into these conditions, we get

h

Jl + mlrel2 + — > J27
I€]
” l
Ji + mlrel® + TflT > J3 + mjr.|t.

For the case that |r.| sufficiently large, the first condition is trivially satisfied. Accord-

ingly, for positive definiteness of the Arnold block, one asks

o> (Js = J) el (7.3.24)

Recall from Lemma 5.4.7, condition (7.3.24) implies the decomposition of V,i.e. (5.4.33)
holds.

Now we check the other block, namely, VinT X VinT . The second variation of Vg

at relative equilibrium (B., r.) satisfying (7.3.20) can be found as follows.
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D*V(B, r)- (i1 B, v1) - (@B, v2)
d

de DVg(eeﬁ" B, r+€v2) '(ﬂleeﬂQB, ‘01)

e=0
GM 3

15 T T
= < BE (m~i~2| Pt r(J) - 2! |4 BIB )

3GM 5 105
BE (m-‘ Ql E r(J) — 2| |4 r* BJB ) Tt vy

- 1—5|C';7—M (v BIBTr + T4, BIBTr) r

3]G|§l (1o BIBTr — BIBT 4137 + BIBT vy)
15GM

+ méfvy — =—=—BIBTrrTv,, v; >

|rf?
= #BIFTrrTo,

_15GM
Il
+ 3%‘{ (=9, BIBTr — #4, BIBTr 4+ #BIBT diyr — #BIBT v,)
— éBIBT iy + €y (BIBTE + BI), up >.
At relative equilibrium (B,,r.) satisfying (7.3.10), we can express D?V; in terms of a

quadratic form,
D*Vi(Be, Te) - (Beit, Bev):(Beit, Bev)

3GM 6GM
T 15("3 "“”“l | |

+ (€201 = Ja) + 1le]) u%+((|512 T - J2)+ms|) "

1 (Jl Ja) uvs3 + |3 (J3 J.,) 111

For (B.u, B.v) € VN1, we can further simplify the above formula by using

(7.3.20) as
D*Vi(Be, 1¢) -6z - &

3GM miglr]  \?
={""5‘2 T 1 Jz)*((Jl—Jo)leuzl)

3GM
(e + 2200 - g+ 1t ) } 129
+ (~omie? + 2250 )

3IGM 6mGM 3miGM
J J J J +.._.__._
<| =) = G = B T

(J3 — Jz)) V3
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Since the coefficient of v is, by applying (7.3.11),
2mGM

BE
5GM 3 9 2mGM

BTNE ( MRS Ty J2> HRNTNE
ImGM 15GM

= ST T gt -2,
e e

— 5ml¢f* +

which is always negative. Thus the second variation of Ve on VinT X Vinr will never
be positive definite. Consequently, for this example, V¢ is insufficient for stability. We
actually need to use the full power of energy-momentum method, namely, checking the
bilinear form B¢(z.) defined in (5.4.34), or the amended potential V,,, cf. (5.4.43).

We next find the other term in (5.4.34). From (7.3.16), (7.3.21), we get

identyo(B,, 7e) (Belt, Bev) -1 . (Be, 1)~ IldentYO(B,, Te) (Bel, B.v)
= < [f[(=A11 + T)aey —m|é||re|(Ves + vies) — liite,
HIE(= 11 + T)dey — mlé] [re|(Ves + voes) — lyie;) >,

where 7 is defined in (7.3.21b). With further calculations, we can express this bilinear

form on the space Vinr X Vinr as
el

vi  (7.3.26)

ident Y7 (2¢)é - If,ek(2) ™" tdent ¥ (zc)da T it ming?

Vint XVINT

By combining (7.3.25), (7.3.26), we end up with the bilinear form B¢(z.),

Be(ze) (8, 6z)

Vint XV,nT

{ l€I* + Gs(Jl—J2)+( m|é] Irel )2

|rel (1= 1)+
IGM |
(a7 + 300 -+ 1l ) | ¥ (7:3.27)
3 5 . 2mGM 4m2I§Hre|2>
+ (-omigpt + InL AL
3GM 6mGM 3m*GM )
+ < l c’s (']3 J2) - W(Jl - J3)+ "‘W(Ja - Jz)) V3.

Now the coefficient for the term v3 has been changed. We can write it now as,
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2mGM | 4m®|€)*|r.|?

- 5m|é|* +

|rel? J1 4+ m|r.|?
Ah ) mGM 4, \3GM
= 1- _ 1 g .
( J1 +m|re|2> INE ( + 7 +m|relz> 2|reI5(J1 + J3 = 2J3)

It is clear then for |r.| sufficiently large, the first term dominates with coefficient

4J;

1l - — >
Jl‘*'m'lrel2

0.

Also for |r.| large, the thirc term in the coefficient of v in (7.3.27) dominates.
Consequently, the quadratic form in (7.3.27) can be made positive definite with the

conditions

Ji > Jp, and Jy > U (7.3.28)

Combining conditions in (7.3.24), (7.3.28), we state the sufficient conditions for stability

in the following theorem.

THEOREM 7.3.1

For the problem of a rigid body with momentum wheel in a central gravitational

force field, conditions
¢ = [€] Been,
!l = lje;, with [ >0,
re = |re] Beeaz.

give rise to a relative equilibrium (B., r.). If, furthermore, for |r.| sufficiently large,

we have

L > (']3 - J1)|€|v
Jl > J21

J3 > JQ,

then this relative equilibrium is relatively stable.

REMARK 7.3.2

In particular, for the case that [ = 0, the sufficient conditions become
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Ji > Ja, J1 > Ja, and J3 > Ja,

which is equivalent to the condition,

J > J3 > Jo.

This is exactly the same condition we obtained from the other two methods in Chapter 6,

namely, the energy-Casimir method and Lagrange-multiplier method, cf. Theorem 6.5.2.

7.4. Multibody Dual-Spin Problem

In this section, we will continue our study of the multibody analog of dual-spin
problem discussed in Sections 4.3, 4.4. Recall that in Theorem 4.4.1, with appropriate
damping mechanism, the system depicted in Figure 4.3.1 asymptotically approaches one
of the stable relative equilibrium corresponding to a suitable gyroscopic system with
symmetry. Here we will compute a stable relative equilibrium. From the construction,
this gyroscopic system has the following entities, cf. (3.5.5a),

Q = SO(3)x SO(3),

K ((Bi, Bia), (Bth, Bin)) = (uT ul) (Jl J”) ("">,

Ih s w2
Y(B1, B2) = (Bijr, Baip), (7.4.1)
V(B) = 0,
G = 50(3),

where, cf. (3.5.5b), (4.3.6b),

3
J, = L + edid + }:Is;,
i=1
I 3 (7.4.2)
Jy = I + edidy + > Ip,,
i=1

J12 = €diB] Bads,
and the components ¥;, y2 of the gyroscopic field are given by solving the equations
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i + Iy =1 = 190,

r (7.4.3)
Jhown + 329 = 0.
The Lagrangian for this system can be written as
1 1
L(By, @, By, &) = = <Qp, iy > 42 < Qy, J2 >
2 2 (7.4.4)
+e < Qla dlB}-Bgdzﬂz >+ < Ql, I>.
The locked inertia dyadic can be found through
< Ev I?ock(BhB?)n >
= < €o(By, B2), fig(B1, B2) >
= <€, (ByJ1Bf + B23,BT + B33 BT + B,ILB n > .
Thus we have
I.(B1,B:) = ByJyBY + B3, BY + B3, BT + B,JL, BY. (7.4.5)

The gyro-momentum in G* induced by the gyroscopic field ¥ can be found from

definition (5.4.15), see also (5.4.48), to be

I = Bl (7.4.6)

Accordingly, the momentum mapping is
H = I?ock(x)g + I;’(m)

(7.4.7)
(ByJy B + B3, BT + B3y, BT + B,JL, BT )¢ + Bl

The augmented potential function Vg is

1
_5 < E’ ?ockf > - < Bll7 €>7
1 .
= -3 < &, (3131 BY + B3y BY + B3, BT + B, 3T, BT )¢ >

Ve(B1, Ba)

- < 5’ B'll >,

-% <& (8131 BT + B3y BY + ¢ Bid Byds + ¢ Brdy Brdh )€ >

- <€ B>,
(7.4.8)

Now we apply the Principle of Symmetric Criticality to find the conditions for
relative equilibrium. The first variation of the augmented potential can be derived as

follows,
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DV¢(By, Bs) (i1 By, 4yB))
= < €BN1BT¢ + EByl + 651115312225, u > (7.4.9)
+ < észngf + 53122253/13157 uz > .

From the above formula, we read out the conditions for the configuration components of

the relative equilibrium (B, Bs.) as satisfying

£ x (B1J1BY &+ Byl) + € Bid; x (€ X (Bads x €))

0,  (7.4.10a)

£ X (BoJ2BT€) + € Bady x (€ x (Brdy x €)) = 0, (7.4.10b)

These are very similar to the conditions we derived before, cf. (3.5.9), except that the
gyroscopic term enters. By taking dot product with £ on both side of (7.4.10a), and

letting 81 = Bydy, s2 = Bads, cf. (3.5.11), we obtain again the coplanarity condition,
€ - (s1 X s3) = 0. (7.4.11)
Consequently, the gyroscopic term doesn’t affect the coplanarity condition for the relative

equilibrium for this problem. With this coplanar condition, conditions (7.4.10) may be

re-expressed as

£ X (B1J1BY €+ Byl) — €(B1d1 -€)(Bad2 x £) = 0, (7.4.12a)
€ X (ByJ2 B €) — £(Bads - €)(Brdy X £)

1l
o

(7.4.12b)

Now we find a particular relative equilibrium for this problem. Let {ej,es, es},
{f1,fs,f3} be the coordinate frames corresponding to body 1, body 2, respectively, such
that

Jies = Jue, Jofi = Joif, t=1,2,3.

It can be checked that if the following conditions holds,

£ =[] Brer = [{| B: 1, (7.4.13a)
l = ll e, (7.4.13b)
dl = Qai ez, dg = a f2, ‘\74136)
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conditions (7.4.12) are satisfied. Thus these conditions (7.4.13) give rise to a relative

equilibrium (Bje, Ba.). From (7.4.13a), we know that

Bie €1 = By f1. (7.4.14)

By substituting (7.4.13a), (7.4.13c) in the coplanarity condition (7.4.11), we get

ey - (82 X Befz) = 0, (7.4.15)

where B, = B}, By.. With (7.4.14), this only happens when
Be f2 = i €z,

Accordingly, we have two sets of relative equilibria expressed in terms of the relative

shape variable B,

Be f1 = e, Be f2 = €9, Be f3 = es, (7.4.160,)

Be f]_ = e, Be f2 = -—esz, Be f3 = -—eg3. (7"4.16[7)

In the following, we will study the stability property of the relative equilibrium corre-
sponding to (7.4.16b) with the conditions (7.4.13). This configuration may be depicted

in Figure 7.4.1.

\Lr

Figure 7.4.1. Relative Equilibrium Configuration.
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The energy-momentum method will be adopted here to determine the stability
conditions. We first need to compute the second variation of the augmented potential.

It can be found as follows,

D*V(By, B,) - (41 B1, 43 By) - (1.B1, 42 B)

d . . . _
= ;i—e- DVf(e‘ * Bhee “232) . (ﬂlee 1 B]_, ﬁge‘ u2B2)
€=0
= < iy ByJ BT ¢ - B1 3BT 4,6 + @3 Byl, i€ >
(7.4.17)
+ < @3 B2J3BT€ - ByJy BT o€, € >
+ & < (%Edl)EEEﬁ, u > +¢e < (ﬁ;é;dz)éﬂl& uy >
+ 2 < (#3Bydy)E, (iisBada)E > .
Define
uy = BT u,, us = BL u,, (7.4.18)

The components of u;, uz will be denoted by (uiy, w2, wa) and (ug;, usg, ua3),

respectively. Also, we will use the notations,

J1 = diag{ J11, Ji2, J1ia },  J2 = diag{ Jo1, Jo2, Ja3 }. (7.4.19)

At relative equilibrium (Bj, Bse) such that (7.4.16b), (7.4.13) hold, and we can further

write the second variation of the augmented potential as
D*Vi(Bie, Bze) - (B1elii, Baeliz) - (Biety, BooUz)
= e|€lfa1 az(unn — u1)® + ((J11 = Jua)l€] + 1) [€ud,
(7.4.20)
+ ((J11 = J12 + €a1a)I€] + 1) [€ud; + (J21 — J23)|€)%ud,
+ (Ja1 = Joz2 + £ a1a2)]é|*u3,.

From Theorem 5.4.10, we check the positive definiteness of the second variation of the
augmented potential on the space of V. For the relative equilibrium under investigation,

we have the momentum mapping, cf. (7.4.7),

pe = ((J11 4 Jo1 + 2c a109)[€] + 1) By, €. (7.4.21)

Thus the Lie algebra corresponding to the isotropy group is
Gu. = Span{ Bic e1 }, (7.4.22)
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with the orthogonal complement with respect to the locked inertia tensor,

Gy, = Span{ By €z, Bio €3 }. (7.4.23)

The space V can then be found through
V= { (BleuAlaB2eﬁ;) L ‘:Bleﬁzy B2eﬁ;)7 (f’Bley ﬁB2e) > = 0, v ne g;‘c },

= { (Brely, B2eliz) ¢ (J11 +€araz)uy; + (J21 +cajaz)uy; = 0 }.
(7.4.24)

The second variation of the augmented potential restricted to V can then be written as

Dz‘/i(BleaB?e) '(Bleﬁzy B2equ) * (BleuAl, B2euA2)

VxVy

2
Jo1 + €aqa
_ 2 21 142 2 |
= chfma ( Ju +eara; * 1) 1 (7.4.25)

+ ((3u1 = J)lEl + L) l€lud; + ((J11 = Jiz + e arar)é] + 1) [€fud,
+ (321 — J23)|€1%u3y + (Jo21 — Ja2 + € @142)|€|uds.

Consequently, we can read off the sufficient conditions for stability from (7.4.25) as,

(J11 = J3)lél + 11 > 0, (7.4.26a)

(J11 = Jiz +eayas)lé] + I > 0, (7.4.26b)
Jo1—Ja3 > 0, (7.4.26¢)

Jo1 — Jaa +caqay > 0, (7.4.26d)

The above discussions was summarized in the following theorem.

THEOREM 7.4.1

For the multibody dual-spin problem, conditions (7.4.13), (7.4.16b) give rise to a

relative equilibrium (Bj,, Ba2.). Furthermore, assuming that

Il
—IZL-l- > Jiz — Ju, (7.4.27a)
I_lfll_ > Ji2 — Ju1 — €aqaq, (7427b)

the relative equilibrium (By., Bs.) is stable if
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Jo1 — Jaz > 0, (7.4.280)

Jy1 — Jea +€aya0 > 0. (7428b)

REMARK 7.4.2

It may be checked that the positive definiteness conditions for the Arnold block

are

(Jur—Jia+Ja1—J23)lé]l + L > 0, (7.4.29a)

(311 —Jig 4 Jo1 — Jao + 2 a1a2)|§| + i > 0. (7.‘4.29())

It is easy to see that these conditions are implied by the conditions in Theorem 7.3.1.

However, this is not enough for stability. There are additional conditions coming from

the other block. Thus, for such a coupled system, we could never regard the system as a
whole rigid body. The coupling effects should be suitably accommodated.

i

Now we consider the other relative equilibrium coming from (7.4.16a). The second

variation of the augmented potential corresponding to the case that the relative shape

is identity, or the two bodies are folded can be found from (7.4.17) to be, cf. (7.4.20),
D*V(Bie, B2e) - (Bielit, Baeliz) - (Breliy, Baoz)
= —elelfarar(un —ua)? + ((Jn — 93)l€] + 1) €lud
(7.4.30)
+ ((311 = J12 — € ara2)|€] + 1) €luly + (Io1 = J23)I€] w3,

+ (Jg1 = Jog — € a1a2)|€)Puls.

Even restricted to the space V, there is always one negative term. This fact suggests
that this relative equilibrium may be unstable, irrespective of the rotor speed. Further

analysis is needed to justify this.
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7.5. Rigid Body with a Flexible Attachment

In this section, we consider the system of a rigid body attached with a string, or a
shear beam. We shall first establish the model for this system and then study stability
properties. The methodology introduced in Chapter 2 will be extended to the infinite
dimensional case. Similar problems are discussed in [55], (38]-

Consider the system configuration depicted in Figure 7.5.1. Let M denote the
space of smooth functions from the interval [0,L] to R®. Let B € SO(3) be the attitude
of the rigid body, with associated coordinate system {ej, ez, es}. The relative angles
between the rigid body and the rotors are denoted by 6;, 62, 63, respectively. With

o € M, the configuration space of the system can be expressed as

Q = SO(3)x (S1) x M

(7.5.1)
= {$= (B, 91, 02, 03, O’) }
This may be alternatively written formally as a manifold, cf. (4.3.1),
Q. = 50(3)x (50(3))* x M
(7.5.2)
= {(B7 Sl’ 527 S39 0') }
with kinematic constraints, cf. (4.3.2a), (4.3.3),
S; = B R(e, 0;), i=1,2,3. (7.5.3)

Note that eventually we need to be precise about appropriate Hilbert manifold structures
on Q, TQ, etc. In this dissertation, we limit ourselves to the formal aspects only. The

tangent space TQ of Q can be written as

TQ = {v. = (B, 61, 6, 63, 0, BQ, wy, wa, w3, V) }. (7.5.4)

By using the techniques developed in Section 2.2, we may write the tangent space to TQ

(second tangent space) and its dual as

Tv,TQ ={E;= (Bﬂa €1y C25 Gy T, B(ﬁQ'*'g)’ M, M2 13, ﬁ)}v (755)
T;:TQ - { vx’" = (B(,E:\Q-{-d), ai, az, as, 0", B,B, by, ba, b3, I/')}, (7.5.6)

with the pairing,
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Figure 7.5.1. Rigid Body with a Flexible Attachment

(vz", Tz) = %tr((Bﬂ)TB(,BQ+d)) +a-¢ + -;-tr((B(ﬁQ+ﬂ))TBﬁ)

+ by + /0 og*(s)-a(s)ds + /0 v*(s)-v(s)ds, 5.1

=a-u+a-(+ gy + b77
L L
+ /0 o"(s)-3(s)ds + /0 v*(s) - 5(s) ds,

where we use the notations a = (a1, a2, a3), b = (b1, b2, b3), ¢ = ((1, (2, (3),s
n = (m, 72, 73). In the following, we will also adopt the notations 8 = (8, 6,, 03),
w = (w1, wg, w3). The boundary conditions on the configuration space are assumed to

be,

BT5(0) = o, (7.5.8a)

BTo(L) = m, (7.5.8b)

where 79, r. are fixed vectors in body coordinates. These boundary conditions on @
give rise to some compatibility conditions on the jet spaces associated with . First,
we consider the tangent space TQQ. The tangent vector (BQ, w, v) at (B, 8, 0) € Q

generates a curve in @ as
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(Be‘iﬁ, f+¢cw, o+ev) € Q.

Thus the curve must satisfy conditions (7.5.8),

(BefNT (o + €v)(0)

ro, (7.5.9a)

(BeENDT (0 + ev)(L) = . (7.5.96)

By taking derivatives of both equations with respect to ¢ and then setting ¢ to be 0,

we obtain the following compatibility conditions,

BTu(0) = Qx 1o, (7.5.10a)

BTy(L) = Qx . (7.5.100)

Similarly, for elements in T, T(Q), T; generates a curve in T'Q) as

(Be®, 0+¢(, o+c5, B (Q+eq), when, v+ev). (7.5.11)

To satisfy conditions (7.5.8), we need similar conditions for & as in (7.5.10),

BT5(0)

u X rg, (7.5.12a)

BTa(L) = uxr. (7.5.12b)

From (7.5.10a), we ask,

(Be““)fr (v+ep)(0) = (Q+€y) X 7o,

which gives us the condition,

BT5(0) = (a2 + §) ro. (7.5.13a)
Analogously, from (7.5.10b), we get
BTo(L) = (4 + §) r. (7.5.13b)

These compatibility conditions will play an important role in the following derivations.
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After the above geometric considerations, we now construct the Lagrangian as-
sociated with this system. We assume for the sake of simplification that the inertial
reference frame is at the center of mass of the rigid body. This eliminates the kinetic
energy of translation of the rigid body. With a similar derivation for the Kinetic energy
as in Section 4.3, by including the kinetic energy from the string, we write the total

kinetic energy as

1 1 1 [F
T(v) = 5 <Q,IQ> 45 < w,IPw > + < Q, Pw > +5 / p(s)|v(s)|2 ds, (7.5.14)
0

where J , I® are the same as defined in (7.2.2), and p is the mass density of the string.
We also assume there is no potential energy other than the stored energy in the string

which can be written as

e T T
V(z) = 5/(; < AB* g,(s), B*g,(s) > ds. (7.5.15)

where A is a symmetric stiffness matrix of the string and is assumed to be uniform. The

Lagrangian for this system is then,
L(vy) = T(vz) — V(z). (7.5.16)

We now generalize the techniques developed in Section 2.2 to the infinite dimen-
sional case. The invariant form of Lagrange-d’Alembert Principle 2.1.9 is still applica-
ble. First, we find the differential of the Lagrangian in (7.5.16). The tangent vector

vz € T,,TQ generates a curve in TQ as shown in (7.5.11). We compute
dL(v;) - 77

= % L(Be‘t, 04 ¢C, o+¢7, Bef*(Q+€9), w+en, v+eb),
e=0
d| 1 1 s
= - = <Q+ey, J(Q+ey)>+7 <w+en,IP(w+en) >
de |, 02 2

I _
F<Qiey Boten >4y [ p@le) +eno) ds
0

- _;_ /L < A(Be* )T (g, + €3,)(s), (Bet )T (o, + €&,)(s) > ds.
0

n

L
<IQ+T5w, y> + < I°(Q +w), n>+/ p(s) < v(s), v(s) > ds
0

L L
—/ < ABTa,(s), WTBTo,(s) > d.s+/ < ABTa,(s), BTG,(s) > ds
0 0
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By using the compatibility conditions (7.5.12), we could further express the differential

as
L e —
dL(v;) 77 =< / BTo,(s)ABTo,(s)ds — fLAr,(L) + Fo Ar,(0), u >
0
+<IQ+15%0, y> + <I5(Q+w), 7>

L L
+/0 < p(s)v(s), v(s) > ds +/0 < BABT 54(s), G4(s) > ds
(7.5.17)

By comparing the above formula with the pairing formula (7.5.7), we could write dL(v;)

in the form of (7.5.6) with the entities,

L
o = / BToy(s)ABT 0y(s)ds — fLAr(L) + FoArs(0),
0

a =0,

p T, (7.5.18)

b = IS(Q + ),

o* = BABT 0,,(s),

v® = p(s)v(s).

Also we may write the partial derivatives of L as

DiI(v;) = (B(BQ+ &), a, o7), (7.5.19a)
Dy L(vz) = (BB, b, v"). (7.5.19b)

Now we could apply an analogous formula as the one in Theorem 2.2.1. Recall that the

Lagrange-d’Alembert Principle gives rise to the equations

< %DgL(’U;), z2>=<D1L(vz), 2> + < f, 2>, VzeT.Q, (7.5.20)

where f is the horizontal component of the exterior force which is a horizontal 1-form
f on TQ. By arguments similar to the ones used in Section 4.3, we determine the
representation of the exterior force. First we write the exterior force on the unconstrained
tangent bundle T'Q,, cf. (7.5.2),

f = (BTs, $iT1, S2T2, S3T3, 77,0, 0, 0, 0, 0). (7.5.21)
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We assume that there are only torques exerted on the connections between the rigid
body and the rotors. Thus 4* := 0 in (7.5.21). (If there were distributed loads on the
flexible attachment, this would not be true any more.) By the characteristics of the

torques, we have the condition

3
BTg = - Y ST,
i=1
or, from (7.5.3),
3
Tp = — Y R(ei, 6:)T..
=1

By a similar computation as in {4.3.8), we obtain the form of f as

flvz) = (0, T%, 0). (7.5.22)

We are ready to find the dynamical equations from (7.5.20). By noting that

B:=BQ 6=uw &=u

we have

d .
E‘{ng(vx)

(BB + BB, b, v*),

(B(QB + B), b, v*).

Let z = (B1, (, ). Using the pairing formula between T*Q and T(Q, we have

< Ed-DgL(vz), z> = %tr((B(QB +Z§))TB12) + <b, (>
t (7.5.23)

+ /0 < v*(s), 6(s) > ds,

and

< DlL('Ux), z> = %tr((B(BQ + d))TBﬂ) + < a, C > (7 5 24)
+ /L < o7(s), G(s) > ds. |
0

Substituting (7.5.22), (7.5.23), (7.5.24) in (7.5.20), with further simplifications, we obtain

the Principle of Virtual Power,
L
< Qxf+f-a, u> + < b-a-T7%, (> +/ <v*(s)=07(s), 3(s) >ds = 0, (7.5.25)
0
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for all u, {, &, where the elements are given in (7.5.18). Consequently, the classical

equations of motion of this system could be written as

B =8xQ + q,
B:a-{-TS,
v = o,

By substituting formula (7.5.18) in the above equations, we obtain the dynamical
equations for the system of rigid body with string and rotors,

JIQ+T50 = (JQ+T50) x Q — FLAr,(L) + 7y Ar,(0)

L a———
+ / BTo,(s)ABTo,(s)ds,
0

I Q+w) = T%,
pf/ = BABTO’SS, (7526)
B = BS},
g = w,
o =

Now we specialize to the situation where there are no rotors on board, which is the

case discussed in [38]. Namely, I° = 0, T° = 0. By defining the convective variables

associated with the system as

(s, t) = B(t)To(s, 1), (7.5.27a)
M(s, t) = p(s)B(t)Tv(s, 1), (7.5.27b)
m(t) = JQt), (7.5.27¢)

the equations of motion (7.5.26) could be now written as

L
m = mxJI  m —ry x Ar,(L) 4+ 1o x Ar,(0) +/ rs X Argds, (7.5.28a)
0

1 ,

i o= rx I lm o+ - M, (7.5.28b)
M = MxJI'm+ Arg,, (7.5.28¢)
B = Bi—im, (7.5.28d)
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with boundary conditions 7(0) = ro, and r(L) = r.. It is clear then that the dynamics
is decoupled to the so-called reduced dynamics (7.5.28a,b,c), and the attitude kinematics

(7.5.28d). The reduced dynamics we obtained here are exactly the same dynamical

equations derived in [38] by replacing
(1) = aeq, rs(L) = ea.
However, the authors adopted a hamiltonian approach in {38].
Now we consider the system in the dual-spin situation. In other words, the rotors

are driven to rotate at a constant speed relative to the rigid body. The driven torque

TS are such that & =0, or

T = 1°Q. (7.5.29)

With this feedback law, the equations of motion of the closed loop system can be found

from (7.5.26) to be

L
m = (m+1)x I m - vy X Ary(L) + 1o X Ar,(0) + / Ty X Arsds, (7.5.30a)
0

Fo=rxJItm+ l M, 7.5.300)
P

M = MxJI 'm+ Arg,, (7.5.30¢)

B = BITTm, (7.5.30d)

where [ = ISw and the convective variables defined in (7.5.27) have been used.
The closed loop system described by (7.5.30) belongs to the category of gyroscopic

systems with symmetry. The configuration space is now

Q. = SO(3) x M, (7.5.31)

with the riemannian metric,

L
< (Bi, v1), (Bia, 1) >(B,e) = < U1, Jua > + / p(s) < v1(s), va(s) > ds.
0
(7.5.32)

The potential energy is given by, cf. (7.5.15),

L
V(B, o) = % /0 < ABTo,(s), BTo,(s) > ds. (7.5.33)
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The gyroscopic field is the same as in the previous examples, cf. (7.3.1),

Y(B, o) = (BI-1I, 0). (7.5.34)

The Lie group SO(3) acts on the configuration manifold @, through the action,

®:G x Qr = Qnr
(7.5.35)
R, (B, ¢) — (RB, Ro).

It is readily seen that the metric, the potential, and the gyroscopic vector field are all

G-invariant with respect to this action. The G-invariant Lagrangian can be then written

as,

. 1 [t
L(B,o,BQ,v) = % <QIQ>+<Q, 1>+ / p(s)| v(s) |*ds
0

- (7.5.36)
-3 / < ABTo,(s), BTo,(s) > ds.
0

It can be checked that this Lagrangian yields the dynamical equations (7.5.30).
Let £ € G = s0(3). The infinitesimal generator corresponding to £ with respect to
the action (7.5.35) is

€o.(B, o) = (£B, o). (7.5.37)
The locked inertia associated with the riemannian metric (7.5.32) can be found through

(é’ Ilock(Byo')'f]) =L (EB7 éa)v (ﬁB? f’a) >>(B,0')a
L e T e
=< (B157 + [ p95G) a)s) 7>,
0
which gives us

L T
I,.(B, ¢) = BJBT+/ p(8)a(s) o(s)ds. (7.5.38)
0

The gyro-momentum in G* corresponding to the gyroscopic field Y defined in (5.4.15)
is

%(B, o) = BL (7.5.39)

The induced pre-momentum mapping for this system can be then found to be,
L — T —
J°(B, g, () = (BJBT + / p(s)a(s) a(s)ds) ¢ + Bl (7.5.40)
0
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Now we study the stability aspects of this problem. With the setup above we could
pursue the energy-momentum analysis of relative equilibria as in the previous sections.
We do not do this here. Instead, the energy-Casimir method will be used to check the

stability conditions for the equilibria of the reduced dynamics (7.5.30a, b, ¢). We assume

that
I = 1 e,
J = dlag{ Jl, Jg, J3 }, (7541)
4 = dxag{ A]_, Ag, A3 }

It can be checked that the point (me, 7., M.), where
me = Ji[{ley,
re(s) = a(s)ez, (7.5.42)
Me(s) = [£lp(s)a(s)es,

gives rise to a relative equilibrium under the condition that the parameters solve the

equation

420"(s) + |EPp(s)a(s) = 0, (7.5.43)

with the boundary conditions a(0) = a¢ (= |ro]), a(L) = ap (= |r]). Sufficient
conditions for stability of this relative equilibrium will be investigated in the following.
Recall that for this system, the energy function on T7'Q is given by (3.2.12). In

terms of the convective variables (m,r, M), the energy can be expressed as

1 L
Hu(m,r M) = 3 <m, 37m> + 5 [ M (s)ds
0 .
- (7.5.44)
+ —/ < Arg(s), rs(s) > ds.
2 Jo

(This is of course defined on TQ,/SO(3).) Since the symmetry group is SO(3), one way
to construct a Casimir functicnal is through (5.3.7). Thus from (7.5.40), we obtain a

natural Casimir functional for this system expressed in terms of the convective variables,
1 L 2 §
Co(m,r, M) == -2-¢ (l m+1 +/ r(s) x M(s)ds | ) . (7.5.45)
0

Combining (7.5.43) and (7.5.44), the energy-Casimir functional can be written as
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Hd’(m?T?M) = HL(’ITL,T‘,A’.[) + C¢(7TL,1‘,M)

=1 <m, I7'm > +£/LLM(3)2ds
2 2 Jo p(s)
L 7.5.46
+ -;-/ < Arg(s), ro(s) > ds ( )
0
1 - )
+ -2—¢ |m+l+/ T(s) X M(s)ds|® ).
0
Let
L
p o= m+l+/ 7(s) x M(s)ds. (7.5.47)
0

The first variation of Hy can be found to be
DHy(m,r, M) - (m,br,6M)

L

=<J'm, m> + L<M(s), M (s) > ds
o p(s)

L
+ /0 < Ary(s), (0r)a(s) > ds + &' (lul®) <, Bu >,
= <I'm + &(ul) bm >

; /"<LM(3) — $(ul?) () X i, EM(5) > ds
0 p(s) ’

+ / < Ars(s), (6r)s(s) > ds + / < &' (|u?) M(s) x p, 6r(s) > ds,
0 0

(7.5.48)
where
L
S = om + / (8r(s) x M(s) + r(s)x 6M(s))ds. (7.5.49)
0
At relative equilibrium (m.,r., M.) given by (7.5.42), we have
L
Pe = ((Jl + / p(s)a(s)’ds) €] + 11) e; = ae, (7.5.50)
0
where we define
L
@ 2 (1 + / p(s)a(s)ds) [€] + L. (7.5.51)
0

Accordingly, in order to have the first variation of Hg vanish at (m., 7., M.), we impose

the following constraint on ¢,
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#(at) = -8 (7.5.52)

-
There is no other requirement on ¢ from the first variation. The second variation of H,
could be computed from (7.5.48). It has the following form,

D*Hy(m,r, M) - (m,br,6M) - (ém,br,6M)

L
=< I m, ém > + / $<&W(s), oM (s) > ds
o (7.5.53)

L
+ 2" () < 6y puTo > + / < A(6)s(s), (6r)a(s) > ds

+ ' (pl?) < 8u, > + S(pl*) <, fp >,
where é6u can be derived from (7.5.49),

L
8oy = 2/ or(s) x 6M(s)ds.
0

At relative equilibrium (m,,r.. M.), we could further write the second variation of H,

as
D?Hy(me, e, Me) - (6m, ér,6M) - (§m, ér,6M)
L
1
=< Jl6m, ém > +/ —| M (s) |ds
o o) MO

+ 26"l ) + /0 < A(6r)s(5), (r)s(s) > ds (7.5.54)

L
- lil loul> - 2|5|/0 eq - (6r(s) x 6M(s))ds.

Also we have, from (7.5.49),

dmy + €| fypadrads + Jy asM;ds
o = bmy — |€| Jy pabrids ; (7.5.55)
émy — [y aéMids

where the arguments (s) of the functions in the integrand is assumed. By letting

[4

203’

¢"(a’) =

(7.5.56)

the second variation could be further written as,
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D*Hy(mg, e, M,) + (6m, 6r,6M) - (6m, br, 8M )

1 N SR I (SR PP
= —fm —_— - = | ém; —— e 2L
J1 + (Jg a) my F J3 a 5m3

9 2 L
!f| om, /paérlds + ——'—f—l /a&Mlds
0

3/ (L 2 L 2
- ﬁ(/ paﬁrlds) - Lf_l_(/ aﬁ.Mlds)
(a1 0 «a 0

L L
= 206 [ Grosits —trs ) ds + [ - (60} + 8 + 6M3) ds
0 0

L
+ / Ar(r)E + Ag(6r2)? + As(6r3)? ds.
0
(7.5.57)

By the energy-Casimir procedure, we have to check the conditions for positive or negative
definiteness of this quadratic form. By comparing (7.5.57) above with Eq. (5.7), p. 88 in
[38], we see that they both have exactly the same form. Besides the notations, the only
differences are at the moment of inertia and the definition of a. Consequently, we could
follow the techniques there to analyze (7.5.57). After nontrivial analysis, we obtain the

following sufficient conditions for stability.

.

. 2 02
a — Jo|¢ » Yo A p(7)*a(r)dr, (7.5.58a)
L
a — J3l€ > p(s) €] / a(r)*dr, fors e [0,L], (7.5.58b)
0
S 3 .
o5 > ywek for s € [0,L], (7.5.58¢)
1 l€1? :
— 7.5.58d
05) > Lo’ for s € [0,1], ( )

where C is the lowest eigenvalue of —d*/ds® arising in applying Poincaré inequality to

simplify (7.5.57), i.e.
/ (3{_( )ds > C/ f(s)ds. (7.5.59)

for f(0) = f(L) = 0. In fact, let £ = —d*/ds®. Let f,g be in the domain of £ with
boundary conditions. We have
<Lf 9>, =<f 9 >1s
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where < -, - >, denote the L, inner product and f’ is the first derivative of f. We
can express nOW,
Jo f()}ds < Lf, f>1,
5 f(s)4ds <f f>L,

= R (f)

which is the Rayleigh quotient associated with the operator L. Since L is strictly
positive and symmetric, from Theorem 5, p. 343 in [67], inf R (f) is equal to the

lowest eigenvalue of £. By standard calculations, the eigenvalues of £ are n?r?/L?,

n=1,2,---. As a consequence, we have a tight bound in (7.5.59),
2
T
CA = EE‘

By substituting the formula for a, cf. (7.5.51), conditions (7.5.58a) and (7.5.58b)

become
- 2 6P f e
(Jl-J2+/0 p(m)a(r)*dr) |6} + i1 > 4C A p(T)a(r)*dr, (7.5.60a)
L L
(= da+ [ omatriar) 16l + b > o(s) el [ a(r)ar
0 0
for s € [0,L]. (7.5.60b)

It is easy to see that for /; sufficiently large, conditions in (7.5.60) are satisfied. We thus
only need to check conditions (7.5.58¢, d) for stability. We summarize our discussion in

the following theorem. The proof automatically follows from the above formulae.

THEOREM 7.5.1

For the system of a rigid body with momentum wheel and attached string, assuming
there is only one rotor along a principal axis, and (7.5.41), also assuming the following

condition holds,

2102 L L
l—lg_l > max{ 11‘41%1"2 /o pir)a(r)’dr — <J1 -—J2+/0 P(T)a(‘r)zdr>,

p(s) /OL a(r)idr - (J1 —Js+ /01- p(r)a(r)2d7'>, for s € [0,1] },
(7.5.61a)

the relative equilibrium expressed in terms of convective variables (7.5.42) is formally

relatively stable modulo G if
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2

1612 < T;%Cs_)— min{ Az, A3 }, fors€[0,L]. (7.5.61b)

Consequently, no matter which principal axis the rotor spins about, for sufficiently
large spinning rate, stability is assured if the assembly rotates at a speed bounded by a
material constant. In particular, for a uniform string, p(s) = po, we could further write

conditions (7.5.61), (7.5.62) as

11- > max{ —————L2p3l£|2 /La(r)zdr-— (J -JN+ /La(r)zdr Js—J1}

lfl Alﬂ_Q A 1 2 T Po A y Y3 1§
2

Iﬂ? < L2p0 mm{ Az, 443 }

(7.5.62)

These conditions (7.5.61), (7.5.62) could be thus used to design a suitable /; to ensure
stability.
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CHAPTER VIII

Conclusions

Some coupled mechanical systems were considered in this dissertation to explore
general methodologies in dealinyg with Eulerian many-body problems arising in spacecraft
design. The path of geometry, dynamics and control proved to be helpful in treating these

problems. Some of the contributions of this dissertation are outlined in the following.

In Chapter Two, the generalized Euler-Lagrange equations for the special orthog-
onal group SO(3) were set up so as to make it possible for us to derive dynamical
equations for any system including SO(3) as a factor in the configuration space. In
particular, this scheme can be easily applied to get the dynamical equations of coupled
rigid bodies. Moreover, the developed geometric structures of the group SO(3) help us
in handling variational problems on T'SO(3) and T™S0O(3). These techniques also were

extended to the infinite dimensional case in Chapter Seven in treating string problems.

One of the most important notions introduced in this dissertation is that of
a gyroscopic‘system with symmetry. It generalizes the notion of simple mechanical
systems with symmetry to include a term linear with respect to velocity variables in
the Lagrangian functional. Such systems are still hamiltonian systems with symmetry.
Most of the interesting results for simple mechanical systems with symmetry can be
transplanted to gyroscopic systems with symmetry. However, this generalization does
enable us to handle a lot more interesting problems such as dual-spin problems, etc.
In Chapter Three, the general framework was introduced with some discussions about
symmetry, reductions, and relative equilibria. In Chapter Four, we proved that the
multibody analog of the dual-spin problem admits as limiting solutions stable relative
equilibria of a gyroscopic system with symmetry. In Chapter Five, the beautiful theorem

on block diagonalization of the second variation of the energy-momentum functional

obtained by Simo, Lewis, Posbergh, and Marsden for simple mechanical systems with
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symmetry was extended successfully to the gyroscopic systems with symmetry. The
block diagonalization theory and related stability results were used in Chapter Seven
on four interesting problems to demonstrate the influence of the gyroscopic field on
dynamical behavior, especially, on stability properties. The notion of gyroscopic control
was also presented to emphasize the possible role of the gyroscopic field in devising

effective control algorithms.

In celestial mechanics, it has been noted that modeling based on point masses is not
sufficient to explain observed phenomenon (cf. [75]). It is thus the main theme of Chapter
Six to initiate a program of treating the bodies in a gravitational field as bodies of finite
extent. For a rigid body in such a force field, we have shown that there are no great circle
relative equilibria for asymmetric bodies, contrary to the usual situation for point-mass
models. This manifests the difference between the two approaches. In order to account
for the problems coming from the integral potential, appropriate approximation schemes
were developed to preserve the structure of the system. However, it has been shown
that the stability property is not preserved under approximation. Methods introduced
in Chapter Five were used to prove a stability result for the approximate models. In
contrast to the classical methods, the modern approach here provides systematic and

efficient means for solving stability problems.

The research in the future will be continued along these lines. Firstly, the higher
order tangent space representations for SO(3) will be generalized to semi-simple Lie
groups. Infinite dimensional systems will also be considered. In particular, modeling

problems involving tether structures are currently under investigation.

Secondly, properties of the gyroscopic systems with symmetry will be explored in
greater detail. In addition to the study of the abstract framework, concrete examples
will be further investigated. Problems related to bifurcation, chaos, geometric phases,
etc. will be formulated and exploited. Furthermore, the role of damping effects in such

systems will be investigated.

Eulerian many-body problems will be further studied. Instead of single rigid body,
the problem of coupled rigid and flexible bodies in a gravitational field will be studied.

189



One interesting example is again the tether problem. We will integrate the techniques
developed in this dissertation towards a deeper understanding of tether problems. We
expect also that the study of such concrete physical problems will, on the other hand,

give us more insight and hints for further development of the general methodologies.
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